	OWNER:

DG TAXUD
	ISSUE DATE:

04/10/2010
	VERSION:

3.02

	Taxation and customs Union DG
EMCS Computerisation Project
Phase 2

SUBJECT:

ECP2-FITSDEV2-DDNEA

DDNEA for EMCS Phase 2
(ECP2-FITSDEV2-DDNEA)

	Framework Contract TAXUD/2008/CC/095
Specific Contract 3

Document History

	Edi.
	Rev.
	Date
	Description
	Action (*)
	Sections

	0
	10
	20/10/2005
	First draft.

Submitted for internal review.
	I
	All

	0
	20
	28/02/2006
	First draft.

Submitted for internal review to DG Taxation and Customs Union.
	I,R
	As required

	0
	30
	05/05/2006
	Revised version of DDNEA

Submitted for internal review.
	I,R
	As required

	1
	00
	15/05/2006
	Incorporating internal review comments

Submitted for review to

DG Taxation and Customs Union.
	I,R
	As required

	1
	01
	10/07/2006
	Incorporating review comments

Submitted for acceptance to

DG Taxation and Customs Union.
	I,R
	As required

	1
	02
	10/08/2006
	Incorporating French and German translations of the Executive Summary, as reviewed and accepted by DG TAXUD.
	I,R
	As required

	1
	03
	07/02/2007
	Incorporating MSA comments.

Submitted to DG TAXUD and Customs Union for review.
	I,R
	As required

	1
	04
	22/02/2007
	Incorporating verification comments.

Submitted to DG TAXUD and Customs Union for acceptance.
	I,R
	As required

	2
	00
	22/03/2007
	Updated for publication.
	I,R
	As required

	2
	01
	08/08/2007
	Submit for review to DG TAXUD.
	I,R
	As required

	2
	02
	17/08/2007
	Incorporating review comments.

Submitted to DG TAXUD and Customs Union for acceptance.
	I,R
	As required

	2
	03
	28/09/2007
	Incorporating corrective changes raised in calls: 24174a, C1072, 24200, 24200a, 24469.

Submitted to DG TAXUD and Customs Union for publication.
	I,R
	As required

	2
	10
	02/10/2007
	Incorporating DDNEA KEL Entries #1, #2, #3 & #5 and alignment with FESS v2.10.
Submitted for review to DG TAXUD.
	I,R
	As required

	2
	11
	24/10/2007
	Incorporating review comments.

Submitted to DG TAXUD and Customs Union for acceptance.

DDNEA KELs are implemented with few minor corrections.
	I,R
	As required

	2
	12
	05/01/2008
	Submitted to DG TAXUD and Customs Union for acceptance incorporating:

· ECP2-EMCSDEV-SC02-DDNEAv2.11-WD;

· DDNEA-KNOWN-ISSUES-v1.20;

· ECP2-EMCSDEV-SC02-FESSv3.00-WD (comments 82, 152, 155, 174, 176, 177, and 178);
· DDNEA KEL entry #6 of ECP2-EMCSDEV-DDNEA-KEL-v1.05-EN.
	I,R
	As required

	2
	13
	05/03/2008
	Incorporating review comments.

Submitted to DG TAXUD for acceptance.
	I,R
	As required

	2
	14
	07/03/2008
	Incorporating verification comments.

Submitted to DG TAXUD and Customs Union for acceptance.
	I,R
	As required

	2
	15
	15/04/2008
	Incorporating verification comments ECP2-EMCSDEV-SC02-DDNEAv2.14-IVE-v1.00-EN and DDNEA-KNOWN-ISSUES-v1.30 comments 32-45.

Submitted to DG TAXUD and Customs Union for acceptance.
	I,R
	As required

	2
	16
	08/12/2008
	Incorporating DDNEA KEL Entry #8 and DDNEA RFCs #001, #002 and #003.

Submitted to DG TAXUD and Customs Union for review.
	I,R
	As required

	2
	17
	24/12/2008
	Incorporating review comments.

Submitted to DG TAXUD for acceptance.
	I,R
	As required

	2
	18
	21/01/2009
	Incorporating DDNEA RFCs #004, #005 and #006.

Submitted to DG TAXUD and Customs Union for review.
	I,R
	As required

	2
	19
	05/02/2009
	Incorporating review comments.

Submitted to DG TAXUD for acceptance.
	I,R
	As required

	2
	20
	05/06/2009
	Incorporating DDNEA RFCs #007, #008, #011 and #012.

Submitted to DG TAXUD and Customs Union for review.
	I,R
	As required

	2
	21
	12/06/2009
	Incorporating review comments.

Submitted to DG TAXUD for acceptance.
	I,R
	As required

	2
	22
	29/07/2009
	Incorporating DDNEA RFC #018.

Submitted to DG TAXUD and Customs Union for review.
	I,R
	As required

	2
	23
	06/08/2009
	Submitted to DG TAXUD and Customs Union for acceptance.
	-
	-

	2
	24
	08/07/2010
	Incorporating DDNEA RFCs #013, #017, #021, #022, #023, and #025 - #041.

Submitted to DG TAXUD and Customs Union for review.
	I,R
	As required

	2
	25
	20/07/2010
	Incorporating review comments.

Submitted to DG TAXUD for acceptance.
	I,R
	As required

	3
	00
	26/07/2010
	Submitted for information to

DG Taxation and Customs Union.
	I,R
	As required

	3
	01
	29/09/2010
	Incorporating DDNEA RFCs #043 and #044.

Submitted to DG TAXUD and Customs Union for review.
	I,R
	As required

	3
	02
	04/10/2010
	Submitted to DG TAXUD for acceptance.
	-
	-

(*) Action: I = Insert R = Replace
Executive Summary

Purpose of this Document

This document is the Design Document for National Excise Applications. It specifies the design requirements to which any Nationally Developed Excise Application (NDEA) and Centrally Developed Excise Application (CDEA) needs to conform.

This applies to Nationally Developed Excise Applications (NDEA), developed by a Member State Administration (MSA) and to Centrally Developed Excise Applications (CDEA), developed by the Central Project Team (CPT).

This document is applicable to every Nationally Developed Excise Application (NDEA) and Centrally Developed Excise Application (CDEA) and must be considered as a mandatory document for all implementation and verification activities.

The purpose of this document is two-fold:

· To state unambiguously what needs to be developed. This will be achieved by specifying the sequences of Information Exchanges to be supported as a number of message exchange protocols and the detailed structure and building rules of these Information Exchanges.

· To define how the Information Exchanges need to be performed. Basically, every Information Exchange needs to be formatted (or represented) in XML representation and this formatted message needs to be transported between Excise Applications.

For NEAs, Information Exchanges are foreseen in the Common Domain (between Member State Administrations) and in the External Domain (between Member State Administration and Economic Operators).

This DDNEA mainly defines aspects for the Application Level and Infrastructure Level of EMCS Common Domain Architecture [A11]. In particular, the DDNEA provides all the required information in order for the NEAs to implement those architectural levels of the EMCS Common Domain Architecture. The Business Level is defined from FESS [A1] since it describes the expected “Services” for EMCS. However, the DDNEA considers this level and the FESS [A1] in order to define aspects of the Application Level since the Application Flow Control is defined based on the “Services” that are expected from EMCS for the Phase 2 (FS0 and FS1).

The EMCS Business Communication Channels that are in the scope of DDNEA are the following: BCC2, BCC7, BCC6, BCC9, BCC10, BCC11 and BCC12. The BCCs that are not in the scope of the DDNEA are those which are related to functionality excluded according to the scope of EMCS Phase 2 (FS0 and FS1) [A2]. The EMCS Infrastructure Communication Channels (ICC), which are in the scope of the DDNEA are the following: ICC4, ICC5, ICC6, ICC11, ICC15, ICC16 and ICC17.

The DDNEA provides information how the NEAs shall communicate with the Common Domain Relay in order to use either the CCN/CSI Services or the CCN Intranet Services. In particular, the Section IX - Transport of Messages via CCN/CSI specifies how the messages need to be transported across the CCN/CSI considering the BCC2, BCC7, BCC6, BCC10, BCC12 and their decomposition into ICC4, ICC5, ICC15 and ICC16. The Section X - Transport of Messages via SOAP/HTTP define the transport of messages via HTTP. These sections specify how a NEA can invoke the Common Domain Central Services web services or to exchange information via either a manual (web browser) or programmatic interface considering the BCC7, BCC6, BCC9, BCC10, BCC11 and BCC12 and their decomposition into ICC6, ICC11 and ICC17.

The DDNEA defines also the EMCS Message format and structure. The Section VIII-XML formatting describes how the EMCS messages need to be formatted in XML format. Moreover, some common design principles are provided regardless the transportation mechanism (CCN/CSI and SOAP/HTTP) in Section VII-Design Principles. Finally, the EMCS Message Structure is defined in Section VI-Technical Message Structure. In this section, it is shown that DDNEA considers the EMCS Message Structure from both Business Level and Application Level. In particular, the Appendix D of DDNEA presents the Technical Message Structure including the FMS of FESS (Business Level) as well as some information required for the Application Flow Control in order to implement the Coordination Protocol.

Finally, the DDNEA specifies how the EMCS Common Domain Service Bus Interface defined in TESS [A11] can be implemented in order to achieve the Business Process Choreography and the Application Flow Control. Although, the Business Process Orchestration is mainly described in FESS [A1] through the Business Flow Diagrams and STDs, the DDNEA also includes some information per FS for that concept of EMCS Common Domain Service Bus Interface. The concepts Business Process Orchestration, Business Process Choreography and the Application Flow Control are defined in TESS [A11].

Regarding Business Process Orchestration, the Section III-Core Business - Functional Stage (FS) 1, Section IV-Central Services and Annex A-Core Business - Functional Stage (FS) 0 provides some information per FS describing which operations should be executed in each domain for each specific scenario (Basic scenario, Change of Destination, etc.). However, the implementation of Business Process Orchestration is national issue since it refers how the NDEA will handle the intra-domain exchanges. At least, the NDEA shall be aligned with the message exchange protocols and operations defined in the aforementioned sections.

The concepts Business Process Choreography and Application Flow Control are completely described in DDNEA through Section III-Core Business - Functional Stage (FS) 1, Section IV-Central Services, Section VII-Design Principles (VII.I.3- Exception Handling), Section V- System Administration and Annex A-Core Business - Functional Stage (FS) 0. The FESS defines the EMCS Business Processes. The controlling and coordination of these processes is described in the aforementioned sections. It shall be noted that the DDNEA is focused only on the functionality, which is included in FS0 and FS1. Any process, which is not in EMCS Phase 2, is considered as out of the scope and it has been excluded from the Application Flow Control.

The Section III, Section IV and Annex A clearly indicate what kind of validations (business or technical) shall be performed per case. In case of business validation, the Appendix D defines what Rules and Conditions shall be satisfied in order to ensure the business validity of the message, while for the case of technical validation, the Appendix H specifies the XSDs based on which the messages shall be checked in order to ensure their technical validity.

Moreover, the DDNEA implements the Coordination protocol and the Exception Handling of Application Flow Control with the description of the message exchange protocols considering exceptional cases, the definition of state-machines per location (Dispatch or Destination), the definition of the error reporting depending on the type of error (format or functional) as well as some design constraints, and finally with the specification for the transport of messages via CCN/CSI (Section III, Section IV, Section VII, Section IX and Annex A). Finally, the logging activities that should be performed by the NDEAs are described in Section V.

Apart from the technical aspects, the DDNEA also considers security aspects as these are defined in SESS [A10]. Therefore, the security is defined either at transport level or at message level depending on the transport mechanism (CCN/CSI, SOAP/HTTP, etc.) More information can be found for each transport mechanism in Section IX, Section X, and Section XI.

As a conclusion, the Header of the messages in Appendix D has been defined in order to contain all the required information for the Coordination protocol, the Exception Handling and the Application Flow Control in general (including security).
Scope of the Document

DDNEA is restricted to the electronic Information Exchanges within EMCS.

This version of DDNEA is applicable to EMCS Phase 2. The functionality, which is in the scope of this Phase, is defined in the Scope of EMCS for Phase 2 [A2]. According to this document, the DDNEA focuses on the Functional Stage (FS) 0 and 1, as these are defined in PSS [A13]. Finally, the DDNEA is aligned with the applicable documents listed in Table 1.

Intended Audience

The intended audience for this document includes:

· Any person responsible for the functional specifications of EMCS.

· Any person responsible for the development of software in the context of EMCS.

· Any person responsible for the definition of tests for EMCS.

· Anyone within the affected service suppliers in the CCN/CSI projects responsible for the delivery of the required services to EMCS.

· Any other authorised body concerned with EMCS, including the Excise Committee, the ECWP, the ECP steering committee, and professional organisations of economic operators.

Audience is assumed to have a good understanding of the IT concepts and terminology used in this document. Also, it is assumed that audience is familiar with FESS [A1], the “Scope Document for EMCS” [A2], the TESS [A11] and the SESS [A10].

Document Structure

This document is structured in sections (further subdivided in chapters) and a number of appendices.

This document comprises the sections, chapters and lists of appendices summarised below:

Section I - General Information includes the following chapters:

· Chapter I.I.1 describes the relationship of this document with other EMCS baseline documents. It defines dependencies with these documents and states the applicability of these documents. It also specifies which standards have to be taken into consideration during the development and verification of any EMCS application.

· Chapter I.I.2 contains definitions used in this document (terminology, acronyms and abbreviations).

· Chapter I.I.3 describes the symbolism and the conventions used in the various models included in this document. It also discusses the technical naming conventions used for the data dictionary that has been included in this document.

Section II - Scope of development discusses the items that need to be developed in EMCS Phase 2 applications. The respective Appendices A for EMCS Phase 2 accompany this section.

The following sections contain a detailed definition of the message protocols to be supported for the different Business Processes in Excise. These message protocols are described by a collection of Time Sequence Diagrams, supported by State Transition Diagrams. Each section deals with one of the following Business Process areas:

Section III - Core Business - Functional Stage (FS) 1 describes the Core Business for the FS1 of EMCS Phase 2. In particular, this section is subdivided in the following chapters:

· Chapter III.I.1 defines the Central Circuit Scenarios, which are the most important message exchange protocols for FS 1;

· Chapter III.I.2 specifies the Exception Handling mechanism using some exceptional scenarios;

· Chapter III.I.3 and III.I.4 presents the State Transition Diagrams and specifically the valid States and State transitions in FS1 of EMCS Phase 2;

· Chapter III.I.5 describes the Functional Timers for the FS1 of EMCS Phase 2.

Section IV - Central Services deals with the centralised collection and distribution of data that is of common interest to the various NDEAs for (such as Common Reference Data and SEED data). This section is subdivided as following:

· Sub-Section IV.I - Central Services Applications provides a small description for the Central Service Applications in EMCS and defines the messages involved;
· Sub-Section IV.II - Exchange of Reference data defines how Common Reference data is exchanged;
· Sub-Section IV.III - Exchange of SEED data defines how the SEED data is exchanged.
Section V - System Administration deals with issues such as logging and tracing and any other administration function to be foreseen.

Section VI - Technical Message Structure defines the detailed technical structure of the Information Exchanges of EMCS. For technical reasons [Section VI], the technical message format is sometimes different from the logical format defined in FESS [A1]. This section is further subdivided as follows:

· Chapter VI.I.1 introduces the content of the Section VI.

· Chapter VI.I.2 introduces the data dictionary. It defines a number of items that make up a message, such as Data Items, Data Groups, and Codelists (sets of discrete values). This chapter is accompanied by Appendix G, Appendix F, and Appendix B.

· Chapter VI.I.3 presents the detailed Technical Message Structure (TMS) for the different Information Exchanges. The detailed TMS for all messages is included in Appendix D. This chapter only explains how the Appendix D needs to be interpreted and used.

· Chapter VI.I.4 describes the “Message Header” used in the Information Exchanges.

· Chapter VI.I.5 discusses the issue of consistency. It defines with which Excise documents this DDNEA needs to be consistent (such as “FESS” [A1]) and it explains how this consistency has been achieved during the TMS definition.

Section VII - Design Principles explains how the system, defined in the previous sections, needs to be built. Basically, every Information Exchange needs to be formatted in XML and needs to be transmitted across one of the three communications platforms (CCN/CSI and SOAP/HTTP). This section states a number of principles that are common regardless the transportation mechanism:

· Chapter VII.I.1 discusses the overall approach.

· Chapter VII.I.2 discusses the usage of character sets and Data Item conventions.

· Chapter VII.I.3 defines technical details for the exception handling in EMCS Phase 2.

· Chapter VII.I.4 defines constraints (any restrictions that are applicable to EMCS development).

Section VIII - XML formatting defines how messages need to be formatted in XML format. This section is structured as follows:

· Chapter VIII.I.1 defines XML conventions for EMCS.

· Chapter VIII.I.2 specifies the Character Sets that shall be supported by the NDEAs.

· Chapter VIII.I.3 discusses the XML formatting of the Information Exchanges. Appendix E accompanies this chapter.

· Chapter VIII.I.4 discusses the XML Schemas of EMCS messages. Appendix H accompanies this chapter.

Section IX - Transport of Messages via CCN/CSI defines how messages need to be transported across the CCN/CSI communication platform. This section is subdivided as follows:

· Chapter IX.I.1 defines architectural assumptions made for the transport of messages via CCN/CSI and details where references to CCN/CSI can be found.

· Chapter IX.I.2 presents the mandatory CCN/CSI elements that will ensure end-to-end communication between two CCN gateways.

· Chapter IX.I.3 presents the recommended CCN/CSI elements for sending and receiving messages.

· Chapter IX.I.4 defines the configuration information necessary for the CCN gateways.

Section X - Transport of Messages via SOAP/HTTP defines the transport of messages via SOAP/HTTP that can be used by a NDEA to invoke the Common Domain Central Services web services. This section is divided as follows:

· Sub-Section X.I - Topology describes the topology of the HTTP transport over the CCN, specifies the URIs for the Common Domain Central Services web services and defines the syntax for the Web Service relative path.

· Sub-Section X.II - CCN Configuration describes the CCN/HTTP configuration in order the Central Services Web Services to be accessible.

· Sub-Section X.III - Web Service Standards provides information for the following Web Service Standards: SOAP, HTTP, XML-RPC, WSDL and WS-Security.

· Sub-Section X.IV - Recommended Usage explains the requirements for a NDEA that communicates with the web services over the SOAP/HTTP transport.

· Sub-Section X.V - Web Service Transactions provides information and describes the implication of Web Services Transactions.

· Sub-Section X.VI - Web Service Security defines the Web Services Security at Transport and Message level.

· Sub-Section X.VII - CCN user HTTP authentication specifies the authentication mechanism in the CCN/HTTP.

Section XI - Application authentication intranet services describes the services, which provide HTTP interfaces so that the web applications can login (ccnServerLogin) and logout (ccnServerLogout) from CCN.

Annex A - Core Business - Functional Stage (FS) 0 describes the Core Business for the FS0 of EMCS Phase 2. In particular, this section is subdivided in the following chapters:

· Chapter A.1 defines the Central Circuit Scenarios, which are the most important message exchange protocols for FS 0;

· Chapter A.2 specifies the Exception Handling mechanism using some exceptional scenarios in FS0;

· Chapter A.3 presents the State Transition Diagrams and specifically the valid States and State transitions in FS0 of EMCS Phase 2;

· Chapter A.4 describes the Functional Timers for the FS0 of EMCS Phase 2;

APPENDICES

· Appendix A presents all messages included in the scope of DDNEA for EMCS Phase 2.

· Appendix B contains a definition of all Codelists used for EMCS that are applicable for Phase 2.

· Appendix C presents how the different Data Groups and Data Items are correlated to the messages.

· Appendix D contains the definition of all messages for EMCS Phase 2.

· Appendix E contains the XML mapping of all Data Items and Data Groups of the EMCS messages.

· Appendix F and Appendix G contain a data dictionary for all elements (Data Items and Data Groups) used to construct these messages.

· Appendix H provides the XML schemas for all messages used in EMCS.

· Appendix I define the WSDL files for the web services provided by the Central Services.

Document Service Information

The different parts that make up DDNEA will be submitted individually to configuration and version control. Individual components may be upgraded and delivered separately.

Maintenance will be provided for this document. The Taxation and Customs Union DG will define and schedule the different deliveries.

Comments can be submitted to this document, either via organised reviews or via calls to the EMCS Central Help Desk.

Known errors to this DDNEA will be maintained in the format of the Known Error List (KEL) published on the EMCS Central Help Desk.

Whenever a part of this document is referred to, a reference will be given either to an entire section or an entire chapter (within a section) or a paragraph (for any other subdivision).

This document will be submitted as a Word file with the following naming convention:

· ECP2-EMCSDEV-DDNEA-Vy.zz-EN.doc, where y and zz are version and revision numbers.

All appendices of EMCS Phase 2 will be delivered as:

· ECP-EMCSDEV-DDNEA_P2_App_X_yzz-EN.DDD, where X stands for the Appendix name, y and zz are version and revision numbers, and DDD is the document type (PDF for an Adobe Acrobat 5-file, DOC for MS Word, MDB for MS Access).

Please note that the Appendices do not evolve separately from the main document. This means that the Appendices will have the same version with that of DDNEA (yzz).
Résumé

Objectif de ce document

Le présent document constitue la documentation de conception pour les applications nationales d’accises (Design Document for National Excise Applications ou DDNEA). Il définit les règles de conception auxquelles toute application de contrôle des accises doit se conformer.

Ceci concerne les applications d’informatisation des accises développées au niveau national (Nationally Developed Excise Applications ou NDEA) par l’administration d’un État membre (Member State Administration ou MSA) et les applications d’informatisation des accises développées au niveau central (Centrally Developed Excise Applications ou CDEA) par l’équipe centrale chargée du projet (Central Project Team ou CPT).

Ce document s’applique à toutes les NDEA ainsi qu’à toutes les CDEA et doit être considéré comme obligatoire pour toutes les activités de mise en oeuvre et de vérification.

L’objectif de ce document est double:

· Indiquer clairement quels sont les éléments à développer en définissant d'une part les séquences d’échanges d’information à prendre en charge comme un certain nombre de protocoles d’échange de message et d'autre part la structure détaillée et les règles d’organisation de ces échanges d’information.

· Définir la manière dont les échanges d’information doivent s’effectuer. Chaque échange d'information doit essentiellement être formaté (ou représenté) en une représentation XML puis ce message formaté doit être transporté d’une application d'accises à l’autre.

Pour les NEA, des échanges d’information sont prévus dans le domaine commun (entre administrations des États membres) et dans le domaine externe (entre administration d’État membre et opérateurs économiques).

Ce DDNEA définit en particulier différents aspects du niveau application et du niveau infrastructure de l’architecture du domaine commun EMCS [A11]. Le DDNEA fournit notamment toutes les informations nécessaires afin que les NEA puissent mettre en place ces deux niveaux de l’architecture du domaine commun EMCS. Le niveau métier est, quant à lui, déterminé à partir de la FESS [A1] car il décrit les «services» attendus d’EMCS. Le DDNEA prend cependant en compte ce niveau-ci et la FESS [A1] afin de définir différents aspects du niveau application car le contrôle des flux de l’application est déterminé en fonction des « services » attendus d’EMCS en phase 2 (FS0 et FS2).

Les canaux de communication EMCS de type métier (Business Communication Channels ou BCC) entrant dans le champ d’application du DDNEA sont les suivants: BCC2, BCC7, BCC6, BCC9, BCC10, BCC11 et BCC12. Les BCC qui ne sont pas couverts par le DDNEA sont ceux liés à des fonctionnalités exclues d’après le champ d’application de la phase 2 d’EMCS (FS0 et FS1) [A2]. Les canaux de communication EMCS de type infrastructure (Infrastructure Communication Channels ou ICC) entrant dans le champ d’application du DDNEA sont les suivants ICC4, ICC5, ICC6, ICC11, ICC15, ICC16 et ICC17.

Le DDNEA contient des informations sur la manière dont les NEA doivent communiquer avec le relais du domaine commun dans le but d’utiliser soit les services CCN/CSI soit les services Intranet CCN. La section IX-Transport de messages via CCN/CSI précise notamment comment les messages doivent être transportés à travers le réseau CCN/CSI en fonction des canaux BCC2, BCC7, BCC6, BCC10, BCC12 et de leur décomposition en canaux ICC4, ICC5, ICC15 et ICC16. La section X-Transport de messages via SOAP/HTTP définissent le transport de messages via HTTP. Ces sections spécifient comment une NEA peut faire exécuter les services web des services centraux du domaine commun ou échanger des informations par le biais d’une interface manuelle (navigateur web) ou programmatique en fonction des canaux BCC7, BCC6, BCC9, BCC10, BCC11 et BCC12 et de leur décomposition en canaux ICC6, ICC11 et ICC17.

Le DDNEA définit également le format et la structure du message EMCS. La section VIII-Formatage XML décrit la façon dont les messages EMCS doivent être convertis au format XML. Certains principes de conception communs à tous les mécanismes de transport (CCN/CSO ou SOAP/HTTP) sont par ailleurs exposés dans la section VII-Principes de conception. Enfin, la structure du message EMCS est définie dans la section VI-Structure technique du message. Cette section indique que, dans le DDNEA, la structure du message EMCS est envisagée à la fois au niveau métier et au niveau application. L’appendice D du DDNEA présente plus particulièrement la structure technique du message, y compris les FMS de la FESS (niveau métier) ainsi que certaines informations requises par le contrôle des flux de l'application afin de mettre en oeuvre le protocole de coordination.

Enfin, le DDNEA précise comment l’interface au bus de service du domaine commun EMCS définie dans les TESS [A11] peut être mise en place, afin d’assurer la chorégraphie des processus métier et le contrôle des flux de l’application. Bien que l’orchestration des processus métier soit principalement décrite dans la FESS [A1] au moyen des différents diagrammes de flux métier et diagrammes de transition d’états (State Transition Diagrams ou STD), le DDNEA inclut également, pour chaque FS, certaines informations relatives à ce concept d’interface au bus de service du domaine commun EMCS. Les concepts d’orchestration des processus métier, de chorégraphie des processus métier et de contrôle des flux de l’application sont définis dans les TESS [A11].

En ce qui concerne l’orchestration des processus métier, la section III-Métier central - Palier fonctionnel (Functional Stage ou FS) 1, la section IV-Services centraux et l’annexe A-Métier central - Palier fonctionnel (FS) 0 contiennent des informations qui décrivent, en fonction de chaque FS, quelles sont les opérations qui devraient être effectuées dans chaque domaine pour chaque scénario particulier (scénario de base, changement de destination, etc.). La mise en oeuvre de l'orchestration des processus métier relève, quant à elle, de chaque pays puisqu’elle est liée à la manière dont la NDEA gérera les échanges à l’intérieur de son domaine. La NDEA devra néanmoins se conformer aux opérations et protocoles d'échange de message définis dans les sections mentionnées ci-dessus.

Les concepts de chorégraphie des processus métier et de contrôle des flux de l’application sont intégralement décrits dans le corps du DDNEA: à la section III-Métier central - Palier fonctionnel (FS) 1, à la section IV-Services centraux, à la section VII-Principes de conception (VII.I.3-Gestion des exceptions), à la section V-Administration système et à l’annexe A Fonctions métier centrales - Palier fonctionnel (FS) 0. La FESS définit les processus métier EMCS. Le contrôle et la coordination de ces processus sont décrits dans les sections mentionnées ci-dessus. Il faut noter que le DDNEA ne porte que sur les fonctionnalités contenues dans FS0 et FS1. Tout autre processus ne faisant pas partie de la phase 2 d’EMCS est considéré comme hors du champ d'application et a été exclu du contrôle des flux de l'application.

La section III, la section IV et l’annexe A indiquent clairement quel type de validation (métier ou technique) doit être effectuée pour chaque cas. Dans le cas d'une validation métier, l'appendice D définit les règles et les conditions qui doivent être respectées afin de garantir la validité métier du message. Dans le cas d'une validation technique, l'appendice H spécifie les XSD à partir desquels les messages doivent être vérifiés pour garantir leur validité technique.

Le DDNEA met par ailleurs en place le protocole de coordination et la gestion des exceptions du contrôle des flux de l’application en décrivant des protocoles d'échange de message pour les cas exceptionnels, en définissant les « state-machines » pour chaque lieu (Départ ou Destination), les différents rapports d’erreur en fonction du type d'erreur (de format ou fonctionnelle) et de certaines contraintes de conception et enfin en spécifiant le transport de messages via CCN/CSI (section III, section IV, section VII, section IX et annexe A). En dernier lieu, les activités d’enregistrement des données qui devraient être réalisées par les NDEA sont décrites à la section V.

En dehors des questions techniques, le DDNEA traite également différents aspects liés à la sécurité tels qu’ils sont détaillés dans les SESS [A10]. La sécurité est ainsi définie soit au niveau du transport, soit au niveau du message, en fonction du mécanisme de transport utilisé (CCN/CSI, SOAP/HTTP, etc.). Dans la section IX, la section X, la section XI et la section XII, des informations plus détaillées sur chaque mécanisme de transport peuvent être consultées.

Enfin, l'en-tête des messages figurant à l'appendice D a été défini afin de contenir toutes les informations requises par le protocole de coordination, la gestion des exceptions et le contrôle des flux de l’application dans leur ensemble (aspect sécurité compris).

Portée du document

Le DDNEA se limite aux échanges d'information électronique au sein d’EMCS.

Cette version du DDNEA s’applique à la phase 2 d’EMCS. Les fonctionnalités concernées par cette phase sont définies dans le champ d’application d’EMCS, phase 2 [A2]. Suivant ce document, le DDNEA portera essentiellement sur les paliers fonctionnels (FS) 0 et 1 tels qu’ils sont définis dans les PSS [A13].

· Le DDNEA est d’autre part conforme aux documents applicables figurant dans le tableau 1.

Public visé

Le public visé par ce document comprend:

· Les personnes responsables des spécifications fonctionnelles d’EMCS.

· Les personnes responsables du développement de logiciels dans le cadre d’EMCS.

· Les personnes responsables de la définition de tests pour EMCS.

· Tous les collaborateurs des fournisseurs de services impliqués dans les projets CCN/CSI qui sont responsables de la prestation des services requis par EMCS.

· Tous les autres organismes autorisés concernés par EMCS, y compris le comité des accises, l’ECWP, le comité directeur ECP et les organisations professionnelles d’opérateurs économiques.

Le public visé est supposé avoir une bonne compréhension de la terminologie et des concepts informatiques utilisés dans ce document. Il est également supposé avoir une bonne connaissance de la FESS [A1], du document spécifiant la portée d’EMCS [A2], des TESS [A11] et des SESS [A10].

Structure du document

Ce document se structure autour de différentes sections (à leur tour subdivisées en chapitres) et de plusieurs annexes.

Ce document est composé des sections, des chapitres et des tables des annexes énumérés ci-dessous:

LA SECTION I - INFORMATIONS GÉNÉRALES comprend les chapitres suivants:

· Le chapitre I.I.1 décrit les relations entre ce document et les autres documents EMCS de référence. Il définit un certain nombre de dépendances avec ces documents et détermine la validité d’application de ceux-ci. Il précise également quelles sont les normes dont il faut tenir compte au cours du développement et de la vérification de chaque application EMCS.

· Le chapitre I.I.2 contient les définitions de termes employés dans ce document (terminologie, acronymes et abréviations).

· Le chapitre I.I.3 décrit l’objectif et la portée du DDNEA, le public visé, la structure interne du document ainsi que des informations de service propres au document.

LA SECTION II - CHAMP D’APPLICATION DU DÉVELOPPEMENT passe en revue les éléments à développer dans les applications prévues en phase 2 d’EMCS. Les annexes A de la phase 2 d’EMCS qui correspondent à cet aspect complètent cette section.

Les sections suivantes présentent une définition détaillée des protocoles de message qui doivent être pris en charge dans les différents processus métier impliqués dans la gestion des accises. Ces protocoles de message sont décrits par une série de diagrammes de séquence accompagnés de diagrammes de transition d’états. Chacune de ces sections traite un des aspects liés aux processus métier:

LA SECTION III - FONCTIONS MÉTIER CENTRALES - PALIER FONCTIONNEL (FS) 1 décrit les fontions métier centrales de FS1 en phase 2 d’EMCS. Cette section est plus précisément subdivisée en plusieurs chapitres:

· Le chapitre III.I.1 définit les scénarios du circuit central qui sont les protocoles d’échange de message les plus importants dans le cadre de FS1;

· Le chapitre III.I.2 spécifie le mécanisme de gestion des exceptions au moyen de plusieurs scénarios exceptionnels;

· Le chapitre III.I.3 et III.I.4 présente les diagrammes de transition d’états et plus particulièrement les états et les transitions d’états valides dans le cas de FS1, en phase 2 d’EMCS;

· Le chapitre III.I.5 décrit les timers fonctionnels de FS1 en phase 2 d’EMCS.

LA SECTION IV - SERVICES CENTRAUX porte sur la collecte et la diffusion centralisées des données présentant un intérêt pour les différentes NDEA (telles que les les données de référence communes et les données SEED). Cette section est subdivisée comme suit:

· LA SOUS-SECTION IV.I - APPLICATIONS DES SERVICES CENTRAUX propose une brève description des applications des services centraux développées pour EMCS et définit les messages utilisés dans ce contexte;
· LA SOUS-SECTION IV.II - ÉCHANGE DE DONNÉES DE RÉFÉRENCE définit la façon dont les données de référence communes sont échangées;
· LA SOUS-SECTION IV.IV - ÉCHANGE DE DONNÉES SEED définit la façon dont les données SEED sont échangées.
LA SECTION V - ADMINISTRATION SYSTÈME porte sur des questions telles que l’enregistrement et le traçage des données et sur toutes les autres fonctions d’administration à prévoir.

LA SECTION VI - STRUCTURE TECHNIQUE DU MESSAGE définit la structure technique détaillée des échanges d’information dans EMCS. Pour des raisons techniques [section VI], le format technique du message diffère parfois du format logique défini dans la FESS. Cette section est à son tour subdivisée comme suit:

· Le chapitre VI.I.1 introduit le contenu de la Section VI.

· Le chapitre VI.I.2 présente le dictionnaire de données. Il définit certains des éléments qui composent un message comme les éléments de données, les groupes de données et les listes de codes (séries de valeurs discrètes). L'appendice G, l'appendice F et l'appendice B complètent ce chapitre.

· Le chapitre VI.I.3 détaille la structure technique du message (Technical Message Structure ou TMS) pour les différents échanges d’information. Le détail des TMS correspondant à chaque message figure à l'appendice D. Dans ce chapitre, il sera uniquement expliqué comment l'appendice D doit être interprété et utilisé.

· Le chapitre VI.I.4 décrit le ‘Message Header’ utilisé dans les Echanges d'Information

· Le chapitre VI.I.5 étudie la question de la cohérence. Il définit les documents relatifs à la gestion des accises avec lesquels ce DDNEA doit concorder (tel que « FESS » [A1]) et explique comment garantir cette cohérence au cours de la définition des TMS.

La SECTION VII - Principes de conception explique comment doit être mis en place le système défini dans les sections précédentes. Tout échange d’information doit avant tout être converti au format XML et transmis par l'intermédiaire d'une des trois plateformes de communication (CCN/CSI et SOAP/HTTP). Cette section fixe un certain nombre de principes communs à tous les mécanismes de transport:

· Le chapitre VII.I.1 explique quelle est l’approche globale.

· Le chapitre VII.I.2 est consacré à l’utilisation des jeux de caractères et des conventions portant sur les éléments de données.

· Le chapitre VII.I.3 définit les détails techniques de la gestion des exceptions en phase 2 d’EMCS.

· Le chapitre VII.I.4 définit les contraintes (toutes les restrictions applicables au développement d’EMCS).

LA SECTION VIII - FORMATAGE XML définit la façon dont les messages doivent être convertis au format XML. Cette section est structurée comme suit:

· Le chapitre VIII.I.1 définit les conventions XML établies pour EMCS.

· Le chapitre VIII.I.2 indique quels sont les jeux de caractères qui doivent être pris en charge par les NDEA.

· Le chapitre VIII.I.3 est consacré au formatage XML des échanges d’information. L’appendice E complète ce chapitre.

· Le chapitre VIII.I.4 est consacré aux schémas XML des messages EMCS. L’appendice H complète ce chapitre.

LA SECTION IX - TRANSPORT DE MESSAGES VIA CCN/CSI définit la façon dont les messages doivent être transportés par l’intermédiaire de la plateforme de communication CCN/CSI. Cette section est subdivisée comme suit:

· Le chapitre IX.I.1 définit les hypothèses architecturales formulées pour permettre le transport de messages via CCN/CSI et précise à quel endroit les références au CCN/CSI peuvent être consultées.

· Le chapitre IX.I.2 présente les éléments CCN/CSI obligatoires qui assureront toute la communication d’une passerelle CCN à l’autre.

· Le chapitre IX.I.3 présente les éléments CCN/CSI recommandés pour pouvoir envoyer et recevoir des messages.
· Le chapitre IX.I.4 définit les informations de configuration nécessaires aux passerelles CCN.

LA SECTION X - TRANSPORT DE MESSAGES VIA SOAP/HTTP définit le transport de messages via SOAP/HTTP qui peut être utilisé par une NDEA pour faire exécuter les services web des services centraux du domaine commun. Cette section est divisée comme suit:

· LA SOUS-SECTION X.I - TOPOLOGIE décrit la topologie du transport HTTP par l’intermédiaire de CCN, spécifie les URI des services web des services centraux du domaine commun et définit la syntaxe du chemin relatif du service web.

· LA SOUS-SECTION X.II - CONFIGURATION CCN décrit la configuration CCN/HTTP permettant de rendre accessible les services web des services centraux.

· LA SOUS-SECTION X.III - NORMES POUR SERVICES WEB fournit des informations relatives aux normes établies pour les services web SOAP, HTTP, XML-RPC, WSDL et WS-Security.

· LA SOUS-SECTION X.IV - UTILISATION RECOMMANDÉE explique quelles sont les conditions que doit remplir une NDEA qui communique avec les services web par l’intermédiaire de SOAP/HTTP.

· LA SOUS-SECTION X.V - TRANSACTIONS DES SERVICES WEB fournit des informations relatives aux transactions réalisées par les services web et décrit ce qu’elles impliquent.

· LA SOUS-SECTION X.VI - SÉCURITÉ DES SERVICES WEB définit la sécurité des services web appliquée au niveau transport et au niveau message.

· LA SOUS-SECTION X.VII - AUTHENTIFICATION HTTP DE L’UTILISATEUR CCN précise le mécanisme d’authentification à utiliser dans CCN/HTTP.

LA SECTION XI - SERVICES INTRANET D’AUTHENTIFICATION DES APPLICATIONS décrit les services qui déploient des interfaces HTTP permettant aux applications web de se connecter (ccnServerLogin) et se déconnecter (ccnServerLogout) à partir de CCN.

APPENDICES

· L’appendice A présente tous les messages entrant dans le champ d’application du DDNEA en phase 2 d’EMCS.

· L’appendice B contient une définition de toutes les listes de codes utilisées pour EMCS qui sont applicables en phase 2.

· L’appendice C présente ce en quoi les différents groupes de données et les différents éléments de données sont en corrélation avec les messages.

· L’appendice D contient la définition de tous les messages utilisés en phase 2 d’EMCS.

· L’appendice E contient le mappage XML de tous les éléments de données et groupes de données présents dans les messages EMCS.

· L’appendice F et l’appendice G contiennent un dictionnaire de données qui répertorie tous les éléments (éléments de données et groupes de données) utilisés pour composer ces messages.

· L’appendice H présente les schémas XML correspondant à tous les messages utilisés dans EMCS.

· L’appendice I définit les fichiers WSDL des services web mis en place par les services centraux.

ANNEXE A - fonctions MÉTIER CENTRALes - PALIER FONCTIONNEL (FS) 0 décrit les fonctions métier centrales de FS0 en phase 2 d’EMCS. Cette section est plus précisément subdivisée en plusieurs chapitres:

· Le chapitre A.1 définit les scénarios du circuit central qui sont les protocoles d’échange de message les plus importants dans le cadre de FS0;

· Le chapitre A.2 spécifie le mécanisme de gestion des exceptions au moyen de plusieurs scénarios exceptionnels pouvant se dérouler pendant FS0;

· Le chapitre A.3 présente les diagrammes de transition d’états et plus particulièrement les états et les transitions d’états valides dans le cas de FS0, en phase 2 d’EMCS;

· Le chapitre A.4 décrit les timers fonctionnels de FS0 en phase 2 d’EMCS.
Informations de service propres au document

Les différentes parties qui constituent le DDNEA seront soumises, une par une, à un contrôle des configurations et des versions. Chacune des composantes peut être mise à jour et livrée séparément.

Ce document sera tenu à jour. La DG Fiscalité et union douanière définira les différentes livraisons et en établira le calendrier.

Des commentaires concernant ce document peuvent être transmis soit par le biais de revues officielles soit en appelant le service d'assistance central d’EMCS.

Les erreurs identifiées dans ce DDNEA seront répertoriées sous forme de liste d'erreurs connues (Known Error List ou KEL) mise à disposition par le service d’assistance central d’EMCS.

Quand une partie de ce document sera mentionnée, la référence indiquée renverra soit à une section entière, soit à un chapitre entier (à l’intérieur d’une section), soit à un paragraphe (pour toute autre subdivision).

Ce document sera envoyé sous forme de fichiers Word portant les noms suivants:

· ECP2-EMCSDEV-DDNEA-Vy.zz-EN.doc, y et zz indiquant le numéro de la version et celui de la révision.

Toutes les annexes de la phase 2 d’EMCS se présenteront de la façon suivante:

· ECP-EMCSDEV-DDNEA_P2_App_X_yzz-EN.DDD, X indiquant le nom de l’annexe, y et zz le numéro de la version et celui de la révision et DDD le type de document (PDF pour un fichier Adobe Acrobat 5, DOC pour MS Word, MDB pour MS Access).

Il est à noter que les annexes ne sont pas modifiées séparément. Cela signifie qu’elles porteront le même numéro de version que le DDNEA (yzz).
Zusammenfassung

Zielsetzung dieses Dokuments

Dieses Dokument ist das Dokument für den Entwurf Nationaler Verbrauchsteueranwendungen (DDNEA - Design Document for National Excise Applications). Es spezifiziert die Anforderungen, denen jede Verbrauchsteuerkontrollanwendung entsprechen muss.

Dies gilt für die von einer Mitgliedstaatsverwaltung (MSA - Member State Administration) national entwickelten Verbrauchsteueranwendungen (NDEA - Nationally Developed Excise Applications) und für die vom Zentralen Projektteam (CPT - Central Project Team) zentral entwickelten Verbrauchsteueranwendungen (CDEA - Centrally Developed Excise Applications).

Dieses Dokument gilt für jede national entwickelte Verbrauchsteueranwendung (NDEAs) und für die zentral entwickelten Verbrauchsteueranwendungen (CDEAs) und ist als obligatorisches Dokument für die Implementierungs- und Verifizierungsaktivitäten zu behandeln.

Dieses Dokument erfüllt einen zweifachen Zweck:

· Es stellt klar, was entwickelt werden muss. Dies soll erreicht werden, indem die Abfolgen von Informationsaustauschen, die unterstützt werden, als eine Anzahl von Protokollen für den Nachrichtenaustausch sowie außerdem die detaillierte Struktur und Erstellungsregeln für diese Informationsaustausche spezifiziert werden.

· Es definiert, wie die Informationsaustausche stattzufinden haben. Im Wesentlichen muss jeder Informationsaustausch als eine XML-Darstellung formatiert (oder dargestellt) werden, und diese formatierte Nachricht muss zwischen den Verbrauchsteueranwendungen transportiert werden.

Für die NEAs sind die Informationsaustausche in dem Gemeinsamen Bereich (zwischen den Mitgliedstaatsverwaltungen) und in dem Externen Bereich (zwischen Mitgliedstaatsverwaltungen und Wirtschaftsbeteiligten) vorgesehen.
Diese DDNEA definiert in erster Linie Aspekte für die Anwendungsebene und die Infrastrukturebene der Architektur des Gemeinsamen EMCS-Bereichs [A11]. Konkret enthält das DDNEA alle Informationen, die für eine Implementierung dieser Architekturebenen des Gemeinsamen EMCS-Bereichs durch die NEAs erforderlich sind. Die Geschäftsebene wird von der FESS [A1] definiert, da die erwarteten „Dienstleistungen“ für das EMCS darin beschrieben werden. Dennoch berücksichtigte die DDNEA für die Definition der Aspekte der Anwendungsebene diese Ebene und die FESS [A1], da die Anwendungsflusskontrolle auf der Grundlage der „Dienstleistungen” definiert ist, die vom EMCS für die Phase 2 erwartet werden (FS0 und FS1).

Was die EMCS Geschäfts-Kommunikationskanäle (BCC - Business Communication Channels) betrifft, so ist diese DDNEA für die folgenden relevant: BCC2, BCC7, BCC6, BCC9, BCC10, BCC11 und BCC12. Die DDNEA gilt nicht für jene BBC, die Funktionalitäten betreffen, die gemäß der Zielsetzung der EMCS-Phase 2 (FS0 und FS1) ausgeschlossen sind [A2]. Die EMCS Infrastruktur-Kommunikationskanäle (ICC - Infrastructure Communication Channels), für die die DDNEA relevant ist, sind folgende: ICC4, ICC5, ICC6, ICC11, ICC15, ICC16 und ICC17.

Die DDNEA bietet Informationen darüber, wie die NEAs mittels Kommunikation über das Gemeinsame Bereichs-Relais entweder die CCN/CSI-Dienste oder die CCN-Intranet-Dienste benutzen. Konkret wird in Abschnitt IX-Transport von Nachrichten über CCN/CSI spezifiziert, wie die Nachrichten unter Berücksichtigung von BCC2, BCC7, BCC6, BCC10, BCC12 und ihrer Zerlegung in ICC4, ICC5, ICC15 und ICC16 über CCN/CSI transportiert werden müssen. Der Abschnitt X-Transport von Nachrichten definiert den Transport von Nachrichten über HTTP. Diese Abschnitte spezifizieren, wie eine NEA die Webservices der Zentralen Dienstleistungen des Gemeinsamen Bereichs aufrufen kann oder Informationen entweder über eine manuelle (Webbrowser) oder programmatische Schnittstelle austauschen kann, wobei BCC7, BCC6, BCC9, BCC10, BCC11 und BCC12 und ihre Zerlegung in ICC6, ICC11 und ICC17 berücksichtigt werden.

Darüber hinaus definiert die DDNEA auch Format und Struktur der EMCS-Nachricht. Der Abschnitt VIII - XML-Formatierung beschreibt, wie die EMCS-Nachrichten in ein XML-Format formatiert werden müssen. Außerdem werden in Abschnitt VII-Entwurfs-Prinzipien einige allgemeine Prinzipien dargestellt, die unabhängig vom Transportmechanismus (CCN/CSI und SOAP/HTTP) Anwendung finden. Schließlich wird in Abschnitt VI - Technische Struktur der Nachrichten die Struktur einer EMCS-Nachricht definiert. In diesem Abschnitt wird gezeigt, dass das DDNEA die EMCS-Nachrichtenstruktur sowohl der Geschäftsebene als auch der Anwendungsebene berücksichtigt. Anhang D der DDNEA präsentiert im Detail die technische Nachrichtenstruktur, einschließlich des FMS der FESS (Geschäftsebene) sowie einige der für die Anwendungsflusskontrolle erforderlichen Informationen, die eine Implementierung des Koordinationsprotokolls ermöglichen.

Schließlich spezifiziert die DDNEA, wie die in der TESS definierte Servicebus-Schnittstelle des Gemeinsamen Bereichs [A11] implementiert werden kann, um die Geschäftsvorgangschoreographie und die Anwendungsflusskontrolle zu gewährleisten. Auch wenn die Geschäftsvorgangsinstrumentalisierung vor allem in FESS [A1] in den Geschäftsstromdiagrammen und den STDs präsentiert wird, enthält das DDNEA auch einige Informationen pro FS für das Konzept der Servicebus-Schnittstelle des Gemeinsamen EMCS-Bereichs. Die Konzepte Geschäftsvorgangsinstrumentalisierung, Geschäftsvorgangschoreographie und Anwendungsflusskontrolle werden in TESS [A11] definiert.

Zur Geschäftsvorgangsinstrumentalisierung finden sich in Abschnitt III-Kerngeschäft - Funktionsabschnitt (FS) 1, Abschnitt IV-Zentrale Dienstleistungen und Annex A-Kerngeschäft - Funktionsabschnitt (FS) 0 einige Informationen pro FS, in denen beschrieben werden, welche Operationen in den einzelnen Bereichen für jedes einzelne Szenarium durchgeführt werden sollten (Grundszenarium, Änderung des Zielortes usw.). Die Implementierung der Geschäftsvorgangsinstrumentalisierung ist jedoch ein nationales Anliegen, da sie die Frage betrifft, wie die NDEA bereichsinterne Austausche handhabt. Die NDEA sollte auf jeden Fall zumindest an den Nachrichtenaustauschprotokollen und Operationen, die in den zuvor beschriebenen Abschnitten definiert wurden, ausgerichtet sein.

Die Konzepte Geschäftsvorgangschoreographie und Anwendungsflusskontrolle werden in der DDNEA in den Abschnitten III-Kerngeschäft - Funktionsabschnitt (FS) 1, Abschnitt IV-Zentrale Dienstleistungen, Abschnitt VII-Gestaltungs-Prinzipien (VII.I.3 - Umgang mit Ausnahmen), Abschnitt V-Systemverwaltung und Annex A-Kerngeschäft - Funktionsabschnitt (FS) 0 präsentiert. Die FESS definiert die EMCS-Geschäftsvorgänge. Die Kontrolle und Koordinierung dieser Vorgänge wird in den zuvor angeführten Abschnitten beschrieben. Es ist jedoch darauf hinzuweisen, dass sich das DDNEA nur auf die in FS0 und FS1 enthaltene Funktionalität beschränkt. Vorgänge, die für die EMCS-Phase 2 nicht relevant sind, werden als nicht unter die Zielsetzung dieses Dokuments fallend betrachtet und bei der Anwendungsflusskontrolle nicht berücksichtigt.

Abschnitt III, Abschnitt IV und Annex A legen klar und deutlich dar, welche Art von Validierungen (geschäftlich oder technisch) je nach Fall durchzuführen sind. Im Falle einer Geschäftsvalidierung definiert Anhang D, welche Regeln und Bedingungen für eine Gewährleistung der fachliche Gültigkeit der Nachricht befolgt werden müssen. Was die technische Validierung betrifft, so spezifiziert Anhang H die XSDs, auf deren Grundlage eine Nachricht für die Gewährleistung ihrer technischen Validität überprüft werden soll.

Darüber hinaus implementiert die DDNEA das Koordinierungsprotokoll und den Umgang mit Ausnahmen der Anwendungsflusskontrolle mit einer Beschreibung der Nachrichtenaustauschprotokolle unter Berücksichtigung von Ausnahmefällen, der Definition der State-Machines pro Ort (Versand- oder Bestimmungsort), der Definition von Fehlermeldungen je nach Fehlerart (Formatfehler oder funktioneller Fehler) sowie einiger Einschränkungen in der Gestaltung und schließlich mit der Spezifikation für den Nachrichtentransport über CCN/CSI (Abschnitt III, Abschnitt IV, Abschnitt VII, Abschnitt IX und Annex A). Schließlich werden in Abschnitt V die von den NDEAs durchzuführenden Log-Aktivitäten beschrieben.

Abgesehen von technischen Aspekten geht die DDNEA auch auf Sicherheitsaspekte, wie in der SESS [A10] definiert, ein. Folglich wird die Sicherheit je nach Transportmechanismus (CCN/CSI, SOAP/HTTP, etc.) entweder auf Transportebene oder auf Nachrichtsebene definiert. Weitere Informationen zu den einzelnen Transportmechanismen finden sich in Abschnitt IX, Abschnitt X, Abschnitt XI und Abschnitt XII.

Als eine Schlussfolgerung wurde die Kopfzeile der Nachrichten in Anhang D so definiert, dass sie all die erforderlichen Informationen zum Koordinierungsprotokoll, zum Umgang mit Ausnahmen und zur Anwendungsflusskontrolle allgemein (einschließlich Sicherheit) enthält.
Geltungsbereich des Dokuments
Die DDNEA beschränkt sich auf den elektronischen Informationsaustausch im Rahmen von EMCS.

Diese Version der DDNEA findet auf die EMCS-Phase 2 Anwendung. Die für diese Phase relevante Funktionalität wird in der Zielsetzung des EMCS für Phase 2 [A2] definiert. Gemäß diesem Dokument konzentriert sich die DDNEA auf Funktionsabschnitt (FS) 0 und 1, wie in den PSS [A13] beschrieben wird.

· Darüber hinaus ist das DDNEA mit den in Tabelle 1 angeführten anwendbaren Dokumenten verbunden.

Zielgruppe

Zur Zielgruppe dieses Dokuments gehören:

· Jede für die funktionellen Spezifikationen des EMCS zuständige Person.

· Jede für die Entwicklung von Software im Rahmen des EMCS zuständige Person.

· Jede für die Definition von Tests für das EMCS zuständige Person.

· Jeder der betroffenen Leistungsträger im Rahmen von CCN/CSI-Projekten, der für die Lieferung von für das EMCS erforderlichen Dienstleistungen verantwortlich ist.

· Jede sonstige Einrichtung, für die das EMCS relevant ist, einschließlich dem Verbrauchsteuerausschuss, dem ECWP, dem ECP-Lenkungsausschuss und derWirtschaftsverbände.

Vom Zielpublikum wird ein gutes Verständnis der in diesem Dokument verwendeten IT-Begriffe und Terminologie vorausgesetzt. Außerdem wird davon ausgegangen, dass sie mit der FESS [A1], dem Dokument „Ziel des EMCS“ [A2], der TESS [A11] und der SESS [A10] vertraut sind.

Struktur des Dokuments

Dieses Dokument ist in Abschnitte (die ihrerseits in Kapitel unterteilt sind) und eine Reihe von Anhänge gegliedert.

Dieses Dokument umfasst die nachstehenden Abschnitte, Kapitel und Anhangs-Listen:

ABSCHNITT I - ALLGEMEINE INFORMATIONEN umfasst die folgenden Kapitel:

· Kapitel I.I.1 beschreibt die Beziehung dieses Dokuments mit anderen EMCS-Basisdokumenten. Es definiert die Relationen zu diesen Dokumenten und verweist auf die Anwendbarkeit dieser Dokumente. Außerdem spezifiziert es, welche Normen bei der Entwicklung und Verifizierung einer EMCS-Anwendung berücksichtigt werden müssen.

· Kapitel I.I.2 enthält die in diesem Dokument verwendeten Definitionen (Terminologie, Akronyme und Abkürzungen).

· Kapitel I.I.3 beschreibt den Zweck und die Zielsetzung des DDNEA, die Zielgruppe, die interne Struktur des Dokuments und sowie außerdem einige Dokument-Dienstleistungsinformationen.

ABSCHNITT II - Entwicklungsumfangbehandelt die Funktionen, die für die Anwendungen der EMCS-Phase 2 entwickelt werden müssen. Zu diesem Abschnitt gehören die einschlägigen Anhänge A für die EMCS-Phase 2.

Die anschließenden Abschnitte enthalten eine detaillierte Definition der Nachrichtenprotokolle, die von den verschiedenen Verbrauchsteuer-Geschäftsvorgängen unterstützt werden müssen. Diese Nachrichtenprotokolle werden von einer Sammlung von. Zeitfolgediagrammen beschrieben und durch Zustandsübergangsdiagramme unterstützt. Jeder Abschnitt behandelt einen der folgenden Geschäftsvorgangsbereiche:

ABSCHNITT III - KERNGESCHÄFT - FUNKTIONSABSCHNITT (FS) 1 beschreibt das Kerngeschäft für FS1 der EMCS-Phase 2. Konkret ist dieser Abschnitt in die folgenden Kapitel untergliedert:

· Kapitel III.I.1 definiert die Zentralen Kreislaufszenarien, welche die wichtigsten Nachrichtsaustauschprotokolle für FS 1 darstellen;

· Kapitel III.I.2 spezifiziert die Mechanismen für den Umgang mit Ausnahmen und behandelt einige Ausnahmeszenarien;

· Kapitel III.I.3 und III.I.4 präsentiert die Zustands-Übergangsdiagramme und insbesondere das gültige Status und Statusüberänge in FS1 der EMCS-Phase 2;

· Kapitel III.I.5 beschreibt die Funktionellen Timer für FS1 der EMCS-Phase 2.

ABSCHNITT IV - ZENTRALE DIENSTLEISTUNGEN behandelt die zentralisierte Erhebung und Verteilung von Daten, die für die verschiedenen NDEAs von gemeinsamem Interesse sind (wie Gemeinsame Referenzdaten und SEED-Daten). Dieser Abschnitt ist wie folgt unterteilt:

· UNTERABSCHNITT IV.I - ZENTRALE DIENSTLEISTUNGSANWENDUNGEN bietet eine kurze Beschreibung der Zentralen Dienstleistungsanwendungen in EMCS und definiert die betroffenen Nachrichten;
· UNTERABSCHNITT IV.II - AUSTAUSCH VON REFERENZDATEN definiert die Methode für den Austausch von Gemeinsamen Referenzdaten;
· UNTERABSCHNITT IV.IV - AUSTAUSCH VON SEED-DATEN definiert die Methode für den Austausch von SEED-Daten.

ABSCHNITT V - SYSTEMVERWALTUNG geht auf Themen wie Protokollierung und Rückverfolgung sowie andere vorgesehene Verwaltungsfunktionen ein.

ABSCHNITT VI - TECHNISCHE NACHRICHTSSTRUKTUR definiert im Detail die technische Struktur des EMCS-Informationsaustausches. Aus technischen Gründen [Abschnitt VI] unterscheidet sich das technische Nachrichtenformat gelegentlich von dem in der FESS beschriebenen logischen Format. Dieser Abschnitt ist wie folgt unterteilt:

· Kapitel VI.I.1 stellt den Inhalt der Sektion VI vor.

· Kapitel VI.I.2 führt das Datenbeschreibungsverzeichnis ein. Dieses definiert eine Reihe von Objekten, die eine Nachricht bildet, wie Datenobjekte, Datengruppen und Codelisten (Satz an diskreten Werten). Dieses Kapitel wird durch Anhang G, Anhang F und Anhang B ergänzt.

· Kapitel VI.I.3 präsentiert im Detail die Technische Nachrichtenstruktur (TMS - Technical Message Structure) für die verschiedenen Informationsaustausche. Eine detaillierte TMS für alle Nachrichten findet sich in Anhang D. Dieses Kapitel enthält lediglich Erklärungen zum Verständnis und zur Verwendung von Anhang D.

· Kapitel VI.I.4 präsentiert die Kopfzeile der Nachrichten verwendet in Informationsaustausch.

· Kapitel VI.I.5 diskutiert über den Aspekt der Übereinstimmung. Es definiert, mit welchen Verbrauchsteuerdokumenten diese DDNEA konsistent sein muss („FESS“ [A1]) und erläutert, wie diese Übereinstimmung während der TMS-Definition gewährleistet wurde.

ABSCHNITT VII - Ausgestaltungsprinzipien erklärt, wie das in den vorstehenden Abschnitten definierte System eingerichtet werden muss. Im Wesentlichen muss jeder Informationsaustausch in XML formatiert sein und über eine der drei Kommunikationsplattformen (CCN/CSI und SOAP/HTTP) übertragen werden. Dieser Abschnitt führt eine Reihe von Prinzipien an, die unabhängig vom Transportmechanismus gelten:

· Kapitel VII.I.1 diskutiert über den Gesamtansatz.

· Kapitel VII.I.2 diskutiert über die Behandlung von Zeichensätzen und Datenobjektkonventionen.

· Kapitel VII.I.3 definiert die technischen Details für den Umgang mit Ausnahmen in der EMCS-Phase 2.

· Kapitel VII.I.4 definiert Einschränkungen (sämtliche Beschränkungen, die die Entwicklung des EMCS betreffen).

ABSCHNITT VIII - XML-FORMATIERUNG definiert die Formatierung der Nachrichten in einem XML-Format. Dieser Abschnitt ist wie folgt aufgebaut:

· Kapitel VIII.I.1 definiert die für das EMCS geltenden XML-Konventionen.

· Kapitel VIII.I.2 spezifiziert die Zeichensätze, die von den NDEAs unterstützt werden müssen.

· Kapitel VIII.I.3 behandelt die XML-Formatierung der Informationsaustausche. Dieses Kapitel wird durch Anhang E ergänzt.

· Kapitel VIII.I.4 behandelt die XML-Schemata von EMCS-Nachrichten. Dieses Kapitel wird durch Anhang H ergänzt.

ABSCHNITT IX - TRANSPORT VON NACHRICHTEN ÜBER CCN/CSI definiert, wie Nachrichten über die CCN/CSI-Kommunikationsplattform transportiert werden. Dieser Abschnitt ist wie folgt untergliedert:

· Kapitel IX.I.1 definiert die architektonischen Annahmen für den Nachrichtentransport über CCN/CSI und beschreibt genau, wo Hinweise auf CCN/CSI gefunden werden können.

· Kapitel IX.I.2 präsentiert die obligatorischen CCN/CSI-Elemente, die eine Endpunkt-Kommunikation zwischen zwei CCN-Portalen gewährleisten.

· Kapitel IX.I.3 präsentiert die für das Versenden und Empfangen von Nachrichten empfohlenen CCN/CSI-Elemente.

· Kapitel IX.I.4 definiert die für die CCN-Portale erforderliche Konfigurationsinformation.

ABSCHNITT X - TRANSPORT VON NACHRICHTEN ÜBER SOAP/HTTP definiert den Transport von Nachrichten über SOAP/HTTP, mit dessen Hilfe eine NDEA den Gemeinsamen Bereich Zentrale Dienstleistungs-Webservices abrufen kann. Dieser Abschnitt ist wie folgt untergliedert:

· UNTERABSCHNITT X.I - TOPOLOGIE beschreibt die Topologie des HTTP-Transports über CCN, spezifiziert die URIs für den Gemeinsamen Bereich Zentrale Dienstleistungs-Webservices und definiert die Syntax des relativen Webservice-Pfades.

· UNTERABSCHNITT X.II - CCN-KONFIGURATION beschreibt die CCN/HTTP-Konfiguration, die den Zugriff auf die Zentrale Dienstleistungs-Webservices gewährleistet.

· UNTERABSCHNITT X.III - WEBSERVICE-NORMEN bietet Informationen zu den folgenden Webservice-Normen: SOAP, HTTP, XML-RPC, WSDL und WS-Security.

· UNTERABSCHNITT X.IV - EMPFOHLENE VERWENDUNG erklärt die Empfehlungen für ein NDEA, das über den SOAP/HTTP-Transport mit den Webservices kommuniziert.

· UNTERABSCHNITT X.V - WEBSERVICE-TRANSAKTIONEN bietet Informationen und beschreibt die Implikation der Webservice-Transaktionen.

· UNTERABSCHNITT X.VI - WEBSERVICE-SICHERHEIT definiert die Sicherheit der Webservices auf Transport- und Nachrichtenebene.

· UNTERABSCHNITT X.VII - HTTP-ZUGRIFFSBERECHTIGUNG DER CCN-BENUTZER spezifiziert die Zugriffsberechtigungs- Mechanismen in CCN/HTTP.

ABSCHNITT XI - INTRANET-DIENSTLEISTUNGEN FÜR DIE ZUGRIFFSBERECHTIGUNG AUF DIE ANWENDUNG beschreibt die Dienstleistungen, die HTTP-Schnittstellen zu den Web-Anwendungen zum Einloggen (ccnServerLogin) und Ausloggen (ccnServerLogout) von CCN bieten.
ANNEX A - KERNGESCHÄFT - FUNKTIONSABSCHNITT (FS) 0 beschreibt das Kerngeschäft für FS0 der EMCS-Phase 2. Konkret ist dieser Abschnitt in die folgenden Kapitel unterteilt:

· Kapitel A.1 definiert die Zentralen Kreislaufszenarien, die die wichtigsten Nachrichtenprokotolle für FS 0 darstellen;

· Kapitel A.2 spezifiziert den Mechanismus für den Umgang mit Ausnahmen anhand einiger Ausnahmeszenarien in FS0;

· Kapitel A.3 präsentiert die Zustands-Übergangsdiagramme und insbesondere das gültige Status und Statusübergänge in FS0 der EMCS-Phase 2;

· Kapitel A.4 beschreibt die Funktionellen Timer für FS0 der EMCS-Phase 2.
ANHÄNGE

· Anhang A präsentiert alle Nachrichten, die unter die Zielsetzung des DDNEA für die EMCS-Phase 2 fallen.

· Anhang B enthält eine Definition aller für das EMCS verwendeten Codelisten, die auf die Phase 2 Anwendung finden.

· Anhang C stellt dar, wie verschiedene Datengruppen und Datenobjekte mit den Nachrichten korrelieren.

· Anhang D enthält eine Liste mit allen Nachrichten für die EMCS-Phase 2.

· Anhang E enthält das XML-Mapping aller Datenobjekte und Datengruppe der EMCS-Nachrichten.

· Anhang F und Anhang G enthalten ein Datenbeschreibungsverzeichnis für alle Elemente (Datenobjekte und Datengruppen), die für die Erstellung dieser Nachrichten verwendet werden.

· Anhang H enthält die XML-Schemata für alle im EMCS verwendeten Nachrichten.

· Anhang I definiert die WSDL-Dateien für die von den Zentralen Dienstleistungen erbrachten Webservices.

Dokumentservice-Informationen

Die verschiedenen Teile des DDNEA werden einzeln einer Konfigurations- und Versionskontrolle unterzogen. Einzelne Teile können getrennt aktualisiert und bereitgestellt werden.

Dieses Dokument wird regelmäßig überarbeitet. Die GD Steuern und Zollunion definiert und plant die verschiedenen Lieferungen.

Anmerkungen zu diesem Dokument können entweder mittels organisierter Revisionen oder mittels Anrufen beim Zentralen EMCS-Helpdesk eingereicht werden.

Bekannte Fehler in diesem DDNEA werden im Format der Liste mit bekannten Fehlern (KEL - Known Error List) geführt, die im Zentralen EMCS-Helpdesk veröffentlicht ist.
Wenn auf einen Teil dieses Dokuments verwiesen wird, so erfolgt der Verweis immer auf einen gesamten Abschnitt oder ein gesamtes Kapitel (innerhalb eines Abschnitts) oder einen Absatz (für sonstige Unterteilungen).

Dieses Dokument wird als eine Word-Datei mit der folgenden Namenskonvention eingereicht werden:

· ECP2-EMCSDEV-DDNEA-Vy.zz-EN.doc, wobei y und zz für die Versions- und Revisionsnummer stehen.

Alle Anhänge zur EMCS-Phase 2 werden wie folgt geliefert:

· ECP-EMCSDEV-DDNEA_P2_App_X_yzz-EN.DDD, wobei X für den Anhangnamen, y und zz für die Versions- und Revisionsnummer und DDD für die Dokumentenart (PDF für eine Adobe Acrobat 5-Datei, DOC für MS Word, MDB für MS Access) stehen.

Bitte beachten Sie, dass Anhänge nicht eigenständig herausgegeben werden. Dies bedeutet, dass die Anhänge immer die gleiche Versionsnummer wie das DDNEA (yzz) haben.

Table of Contents
2Document History

Executive Summary
5
Résumé
13
Zusammenfassung
22
Table of Contents
31
List of Figures
34
List of Tables
40
Section I General Information
42
I.I.1 Applicable and Reference documents
42
I.I.2 Definitions
44
I.I.3 Symbolism and Conventions Used
49
Section II Scope of development
55
II.I.1 Information Exchange Overview for EMCS Phase 2
55
II.I.2 Information Exchange Map of EMCS Phase 2 for FS0
56
II.I.3 Information Exchange Map of EMCS Phase 2 for FS1
57
Section III Core Business - Functional Stage (FS) 1
58
III.I.1 Central Circuit Scenarios
58
III.I.2 Exception Handling (EH)
137
III.I.3 State-Transition Diagrams for FS1 for Basic Scenarios
161
III.I.4 State-Transition Diagrams for FS1 for Export Scenarios
163
III.I.5 Functional Timers
166
Section IV Central Services
168
Sub-Section IV.I Central Services Applications
168
IV.I.1 SEED
168
IV.I.2 CS/MIS
168
IV.I.3 Messages involved
168
Sub-Section IV.II Exchange of Reference data
169
IV.II.1 Introduction
169
IV.II.2 Functional ways to get data
171
IV.II.3 Modes of access to SEED
172
Sub-Section IV.III Exchange of SEED data
177
IV.III.1 Introduction
177
IV.III.2 Functional ways to get data
181
IV.III.3 Modes of access to SEED
183
Section V System Administration
193
Section VI Technical Message Structure
194
VI.I.1 Introduction
194
VI.I.2 Data dictionary
194
VI.I.3 Technical message structure
195
VI.I.4 Common Message Header
197
VI.I.5 DDNEA consistency
197
Section VII Design Principles
199
VII.I.1 Approach
199
VII.I.2 Character Sets and Data Item Conventions
199
VII.I.3 Exception Handling
203
VII.I.4 Availability and Performance Constraints
211
Section VIII XML formatting
212
VIII.I.1 XML Schema
212
VIII.I.2 Character set support
213
VIII.I.3 XML mapping of Information Exchange
213
VIII.I.4 XML schema mapping of Information Exchange (XSD)
213
Section IX Transport of Messages via CCN/CSI
214
IX.I.1 Introduction
214
IX.I.2 Topology
215
IX.I.3 Environment
239
IX.I.4 Recommended Use of CCN/CSI
246
IX.I.5 Configuration Information
249
Section X Transport of Messages via SOAP/HTTP
258
Sub-Section X.I Topology
258
X.I.1 HTTP Transport
258
X.I.2 Uniform Resource Identifier
259
X.I.3 Environments - Web Service Relative Path
259
Sub-Section X.II CCN Configuration
261
X.II.1 Responsibility Model
261
X.II.2 CCN/HTTP Configuration Data
261
X.II.3 CCN/HTTP Configuration Procedure
263
Sub-Section X.III Web Service Standards
264
X.III.1 HTTP
264
X.III.2 SOAP
264
X.III.3 WSDL
265
X.III.4 UDDI
265
X.III.5 WS-Security
265
Sub-Section X.IV Recommended Usage
265
X.IV.1 SOAP Message Structure
266
X.IV.2 SOAP Message Exchange Patterns
268
Sub-Section X.V Web Service Transactions
274
X.V.1 Asynchronous Web Services
274
Sub-Section X.VI Web Service Security
275
X.VI.1 HTTP Transport Security
275
Sub-Section X.VII CCN user HTTP authentication
275
Section XI Application authentication intranet services
279
Sub-Section XI.I ccnServerLogin service
279
XI.I.1 DTD of the response
279
XI.I.2 Example of request
279
XI.I.3 Example of successful response
280
XI.I.4 Example of unsuccessful response
280
Sub-Section XI.II ccnServerLogout service
280
XI.II.1 DTD of the response
280
XI.II.2 Example of request
281
XI.II.3 Example of successful response
281
XI.II.4 Example of unsuccessful response
281
XI.II.5 WS-Security
282
Annex A Core Business - Functional Stage (FS) 0
284
A.1 Central Circuit Scenarios
284
A.1.1 Basic Scenario
284
A.1.2 Valid Business Scenarios before the submission of Report of Receipt
290
A.1.3 Valid Business Scenarios after the reception of Report of Receipt (Refused Delivery)
299
A.1.4 Other Valid Scenarios
305
A.2 Exception Handling (EH)
309
A.2.1 Exception Handling in External Domain
309
A.2.2 Exception Handling in Common Domain
310
A.3 State-Transition Diagram for FS0
310
A.4 Functional Timers
311
Appendix A : Message Scope
312
Appendix B : Codelists
312
Appendix C : EMCS Correlation Table
312
Appendix D : Technical Message Structure
312
Appendix E : XML Mapping
312
Appendix F : Data Groups & Transaction Hierarchy
312
Appendix G : Data Items
312
Appendix H : Directory with XML Schemas (XSDs)
312
Appendix I : Directory with Web Service Interface Definitions (WSDLs)
312

List of Figures

51Figure 1: Time Sequence Diagram

53Figure 2: Example of State Transition Diagram

56Figure 3: Information Exchange Map of EMCS Phase 2 for FS0

57Figure 4: Information Exchange Map of EMCS Phase 2 for FS1

60Figure 5: TSD - Submission of e-AAD of which delivery is “Accepted” (with or without shortages)

61Figure 6: CLD - Submission of e-AAD of which delivery is “Accepted” (with or without shortages)

62Figure 7: TSD - Submission of e-AAD of which delivery is “Refused”

63Figure 8: CLD - Submission of e-AAD of which delivery is “Refused”

64Figure 9: TSD - Submission of e-AAD of which delivery is “Partially Refused”

65Figure 10: CLD - Submission of e-AAD of which delivery is “Partially Refused”

67Figure 11: TSD - Change of MS of Destination following the Submission of e-AAD

68Figure 12: CLD - Change of MS of Destination following the Submission of e-AAD

70Figure 13: TSD - Change of Consignee following the Submission of e-AAD (MS of Destination unchanged)

71Figure 14: CLD - Change of Consignee following the Submission of e-AAD (MS of Destination unchanged)

72Figure 15: TSD - Change of Place of Delivery following the Submission of e-AAD (Consignee unchanged)

73Figure 16: CLD - Change of Place of Delivery following the Submission of e-AAD (Consignee unchanged)

74Figure 17: TSD - Submission of cancellation of e-AAD

75Figure 18: CLD - Submission of cancellation of e-AAD

77Figure 19: TSD - Consignor changes the MS of destination after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

78Figure 20: CLD - Consignor changes the MS of destination after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

80Figure 21: TSD - Consignor changes the Consignee after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

80Figure 22: CLD - Consignor changes the Consignee after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

82Figure 23: TSD - Consignor changes the Place of Delivery after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

83Figure 24: CLD - Consignor changes the Place of Delivery after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

84Figure 25: TSD - Reminder at expiry time for change of destination after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

84Figure 26: CLD - Reminder at expiry time for change of destination after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

86Figure 27: TSD - e-AAD information downloaded successfully by a non-involved MSA

86Figure 28: CLD - e-AAD information downloaded successfully by a non-involved MSA

87Figure 29: TSD - Download of an e-AAD by a non-involved MSA failed

87Figure 30: CLD - Download of an e-AAD by a non-involved MSA failed

88Figure 31: TSD - Successful retrieval of e-AAD(s)

88Figure 32: CLD - Successful retrieval of e-AAD(s)

88Figure 33: TSD - No movement found or limit exceeded

89Figure 34: CLD - No movement found or limit exceeded

91Figure 35: TSD - Local Clearance at Export followed by Export Confirmation of Exit

92Figure 36: CLD - Local Clearance at Export followed by Export Confirmation of Exit

93Figure 37: TSD - Local Clearance at Export followed by Export Cancellation of Exit

94Figure 38: CLD - Local Clearance at Export followed by Export Cancellation of Exit

96Figure 39: TSD - Local clearance at Export followed by negative cross-checking, export declaration cancellation and submission of new export declaration

97Figure 40: CLD - Local clearance at Export followed by negative cross-checking, export declaration cancellation and submission of new export declaration

98Figure 41: TSD - Local clearance at Export followed by negative cross-checking and e-AAD and export declaration cancellation

99Figure 42: CLD - Local clearance at Export followed by negative cross-checking and e-AAD and export declaration cancellation

100Figure 43: TSD - Local clearance at Export and movement not released by Customs followed by e-AAD cancellation

100Figure 44: CLD - Local clearance at Export and movement not released by Customs followed by e-AAD cancellation

102Figure 45: TSD - Local Clearance at Export and movement not released by Customs followed by submission of new export declaration

102Figure 46: CLD - Local Clearance at Export and movement not released by Customs followed by submission of new export declaration

105Figure 47: TSD - Export Operation at Office of Export followed by Export confirmation of exit

106Figure 48: CLD - Export Operation at Office of Export followed by Export confirmation of exit

108Figure 49: TSD - Export Operation at Office of Export followed by Export cancellation of exit

109Figure 50: CLD - Export Operation at Office of Export followed by Export cancellation of exit

111Figure 51: TSD - Export Operation at Office of Export followed by negative cross-checking before the export release and Change of Destination

112Figure 52: CLD - Export Operation at Office of Export followed by negative cross-checking before the export release and Change of Destination

114Figure 53: TSD - Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of new export declaration

115Figure 54: CLD - Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of new export declaration

116Figure 55: TSD - Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of change of destination

117Figure 56: CLD - Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of change of destination

118Figure 57: TSD - Export Operation at Office of Export and movement not released by Customs followed by new export declaration

119Figure 58: CLD - Export Operation at Office of Export and movement not released by Customs followed by new export declaration

120Figure 59: TSD - Export Operation at Office of Export and movement not released by Customs followed by change of destination

120Figure 60: CLD - Export Operation at Office of Export and movement not released by Customs followed by change of destination

123Figure 61: TSD - Export Operation at Office of Export followed by Export confirmation of exit

124Figure 62: CLD - Export Operation at Office of Export followed by Export confirmation of exit

125Figure 63: TSD - Export Operation at Office of Export followed by Export cancellation of exit

126Figure 64: CLD - Export Operation at Office of Export followed by Export cancellation of exit

128Figure 65: TSD - Export Operation at Office of Export followed by cross-checking failure before the export release and Change of Destination

129Figure 66: CLD - Export Operation at Office of Export followed by cross-checking failure before the export release and Change of Destination

131Figure 67: TSD - Export Operation at Office of Export followed by cross-checking failure after the export release followed by Export declaration cancellation and resubmission of new export declaration

132Figure 68: CLD - Export Operation at Office of Export followed by cross-checking failure after the export release followed by Export declaration cancellation and resubmission of new export declaration

133Figure 69: TSD - Export Operation at Office of Export followed by cross-checking failure after the export release, export declaration cancellation and submission of change of destination

134Figure 70: CLD - Export Operation at Office of Export followed by cross-checking failure after the export release, export declaration cancellation and submission of change of destination

135Figure 71: TSD - Export Operation at Office of Export and movement not released by Customs followed by new export declaration

136Figure 72: CLD - Export Operation at Office of Export and movement not released by Customs followed by new export declaration

136Figure 73: TSD - Export Operation at Office of Export and movement not released by Customs followed by change of destination

137Figure 74: CLD - Export Operation at Office of Export and movement not released by Customs followed by change of destination

139Figure 75: TSD - Manual Status Request/Response

140Figure 76: CLD - Manual Status Request/Response

142Figure 77: TSD - Status Synchronisation Request for a missing RoR (IE818) - Re-submission of RoR (IE818)

142Figure 78: CLD - Status Synchronisation Request for a missing RoR (IE818) - Re-submission of RoR (IE818)

144Figure 79: TSD - Status Synchronisation Request for a missing Update Message (IE813) - Re-submission of Update Message (IE813)

145Figure 80: CLD - Status Synchronisation Request for a missing Update Message (IE813) - Re-submission of Update Message (IE813)

147Figure 81: TSD - Status Synchronisation Request for a missing Cancellation Notification (IE810) - Re-submission of Cancellation Notification (IE810)

147Figure 82: CLD - Status Synchronisation Request for a missing Cancellation Notification (IE810) - Re-submission of Cancellation Notification (IE810)

149Figure 83: TSD - Status Synchronisation Request for a missing Manual Closure Notification (IE905)

149Figure 84: CLD - Status Synchronisation Request for a missing Manual Closure Notification (IE905)

151Figure 85: TSD - Positive response on a requested e-AAD

152Figure 86: CLD - Positive response on a requested e-AAD

153Figure 87: TSD - Negative response on a requested e-AAD

153Figure 88: CLD - Negative response on a requested e-AAD

155Figure 89: TSD - Status Request/Response after the TIM_AAD timer expiration - Missed RoR

155Figure 90: CLD - Status Request/Response after the TIM_AAD timer expiration - Missed RoR

157Figure 91: TSD - Status Request/Response after the TIM_AAD timer expiration - Reminder for RoR

158Figure 92: CLD - Status Request/Response after the TIM_AAD timer expiration - Reminder for RoR

159Figure 93: TSD - Manually closing of the movement after the refusal of delivery

160Figure 94: CLD - Manually closing of the movement after the refusal of delivery

161Figure 95: STD at MSA of Dispatch for FS1

162Figure 96: STD at MSA of Destination for FS1

163Figure 97: STD at Dispatch - Local Clearance

164Figure 98: STD at Dispatch - Export operation at Office of Export when MS of Dispatch same as MS of Export

164Figure 99: STD at Dispatch - Export operation at Office of Export when MS of Dispatch different than MS of Export

165Figure 100: STD at Destination - Export operation at Office of Export when MS of Dispatch is different than MS of Export

170Figure 101: Dissemination of Reference data

171Figure 102: Re-synchronisation of Reference data

174Figure 103: Retrieve or Extract Entity Web Service

179Figure 104: Dissemination of SEED data from MSA Central Services to SEED

179Figure 105: Dissemination of SEED data where refusal of economic operators update occurs

180Figure 106: Dissemination of SEED data where update of economic operators is accepted

181Figure 107: Re-synchronisation of SEED data

184Figure 108: Maintain Entity Web Service

187Figure 109: Maintain Entity Web Service (Rejection of Updates)

189Figure 110: Retrieve or Extract Entity Web Service

200Figure 111: Character sets and conventions in use

204Figure 112: Exception Hierarchy

220Figure 113: The generation of the CorrelId field value decision process

224Figure 114: Example of CSIDD allocation, initialisation with Information Exchange and encoding

228Figure 115: Normal use of QoS parameters for EMCS

230Figure 116: Exception and expiration reports

230Figure 117: State Transition Diagram of the sending CSI stack (normal flow)

245Figure 118: Normal Operations with a NEA

245Figure 119: Normal Operations with SEED

246Figure 120: International Testing with another NEA

246Figure 121: Conformance Testing

248Figure 122: A possible sequence for using CSI verbs

258Figure 123: HTTP over CCN Transport Topology

264Figure 124: Generic SOAP Interaction

266Figure 125: SOAP 1.2 Envelope

269Figure 126: SOAP Conversation Phases

272Figure 127: MSA Response to Service Exception.

276Figure 128: Http flow (user part)

277Figure 129: CCN Intranet user login screen

282Figure 130: WSSE Security Structure

283Figure 131: SOAP Request/Response Elements Contained by the WSSE Security Structure

286Figure 132: TSD - Reception of e-AAD of which delivery is “Accepted” (with or without shortages) (FS0)

287Figure 133: CLD - Reception of e-AAD of which delivery is “Accepted” (with or without shortages) (FS0)

288Figure 134: TSD - Reception of e-AAD of which delivery is “Refused” (FS0)

289Figure 135: CLD - Reception of e-AAD of which delivery is “Refused” (FS0)

290Figure 136: TSD - Reception of e-AAD of which delivery is “Partially Refused” (FS0)

290Figure 137: CLD - Reception of e-AAD of which delivery is “Partially Refused” (FS0)

292Figure 138: TSD - Change of MS of Destination following the reception of a valid e-AAD (FS0)

293Figure 139: CLD - Change of MS of Destination following the reception of a valid e-AAD (FS0)

294Figure 140: TSD - Change of Consignee following the reception of a valid e-AAD (FS0)

295Figure 141: CLD - Change of Consignee following the reception of a valid e-AAD (FS0)

296Figure 142: TSD - Change of Place of Delivery following the reception of a valid e-AAD (FS0)

297Figure 143: CLD - Change of Place of Delivery following the reception of a valid e-AAD (FS0)

298Figure 144: TSD - Reception and processing of e-AAD cancellation

299Figure 145: CLD - Reception and processing of e-AAD cancellation

301Figure 146: TSD - Processing of change of the MS of Destination for an e-AAD of which delivery has been “Refused” or “Partially Refused”

301Figure 147: CLD - Processing of change of the MS of Destination for an e-AAD of which delivery has been “Refused” or “Partially Refused”

303Figure 148: TSD - Processing of change of Consignee for an e-AAD of which delivery has been “Refused” or “Partially Refused”

303Figure 149: CLD - Processing of change of Consignee for an e-AAD of which delivery has been “Refused” or “Partially Refused”

304Figure 150: TSD - Processing of change of Place of Delivery for an e-AAD of which delivery has been “Refused” or “Partially Refused”

305Figure 151: CLD - Processing of change of Place of Delivery for an e-AAD of which delivery has been “Refused” or “Partially Refused”

306Figure 152: TSD - e-AAD information downloaded successfully by a non-involved MSA

306Figure 153: CLD - e-AAD information downloaded successfully by a non-involved MSA

307Figure 154: TSD - Download of an e-AAD by a non-involved MSA failed

307Figure 155: CLD - Download of an e-AAD by a non-involved MSA failed

308Figure 156: TSD - Successful retrieval of e-AAD(s)

308Figure 157: CLD - Successful retrieval of e-AAD(s)

309Figure 158: TSD - No movement found or limit exceeded

309Figure 159: CLD - No movement found or limit exceeded

310Figure 160: STD at MSA of Destination for FS0

List of Tables

42Table 1: Applicable Documents

44Table 2: Applicable Standards

44Table 3: Reference Documents

45Table 4: Terminology

48Table 5: Acronyms and Abbreviations

50Table 6: UML business modelling elements

51Table 7: Role types and organisations

166Table 8: TIM_AAD functional timer in FS1

166Table 9: TIM_EXP functional timer in FS1

167Table 10: TIM_CHS functional timer in FS1

196Table 11: Use of status codes

202Table 12: Date/Time fields format and their corresponding regular expressions

206Table 13: Semantic layer validations applicability to business communication channels

208Table 14: Coordination protocol error codes

208Table 15: Coordination protocol errors to refusal message map

209Table 16: Business compliance error codes

209Table 17: Business compliance errors to refusal message map

210Table 18: Business compliance error codes specific to IE714

210Table 19: Business compliance error codes specific to IE702

217Table 20: MQ Message Descriptor

221Table 21: CSI Data Descriptor

223Table 22: MsgTypId used for an Information Exchange of EMCS

225Table 23: CCN/CSI Quality of Service structure

234Table 24: MQ Object Descriptor

234Table 25: CSI verbs for queue access

237Table 26: CSIMQGMO Object Descriptor

241Table 27: Information Exchanges exchanged via the ‘Core flow’ queue

242Table 28: Queue Names for National Gateways

243Table 29: National Gateway names

244Table 30: Queue Names for Taxation and Customs Union DG Gateways

244Table 31: National Gateway names

251Table 32: External Configuration Data defined by MSA

252Table 33: External Configuration Data defined by EMCS-CO

252Table 34: Configuration of default QoS

254Table 35: List of user profiles

257Table 36: IDL definition of CCN messages for EMCS

260Table 37: Central Services Web Service Relative URIs by Processing Area

261Table 38: User Profiles for National Gateways access to Central Services Web Services

262Table 39: User Profiles for National Gateways Access to Central Services Web interface

262Table 40: User Profiles for DG TAXUD Gateway Access to Central Services Web Services

262Table 41: User Profiles for DG TAXUD Gateway Access to Central Services Web interface

270Table 42: SOAP Conversation Lifetime Attributes

279Table 43: ccnServerLogin syntax and description

279Table 44: ccnServerLogin response’s DTD

280Table 45: ccnServerLogin request example

280Table 46: ccnServerLogin success response example

280Table 47: ccnServerLogin error response example

280Table 48: ccnServerLogout syntax and description

281Table 49: ccnServerLogout response’s DTD

281Table 50: ccnServerLogout request example

281Table 51: ccnServerLogout success response example

281Table 52: ccnServerLogout error response example

311Table 53: TIM_EXP functional timer in FS0

Section I General Information

This section contains some introductory information regarding the relationship of this document with the other EMCS baseline documents. Moreover, it provides some clarifications on the terminology and abbreviations used in this document as well as some information with the symbolism and conventions used.

I.I.1 Applicable and Reference documents

I.I.1.1 Applicable Documents and Standards

I.I.1.1.1 Documents

The following documents are applicable to this document:

	Ref.
	Reference
	Title
	Release

	A1
	ECP1-ESS-FESS
	Functional Excise System Specifications (FESS)
	2.13-EN

	A2
	ECP2-EMCSDEV-SC01-SD
	Scope Document for EMCS Phase 2
	2.11-EN

	A3
	CCN/CSI-PRG-AP/C-01-MARB
	CCN/CSI Application Programming Guide (C language)
	Ed11

	A4
	CCN/CSI-PRG-HL/Cob/BS2000-01-MARB
	HL Programming Guide (COBOL Language for BS2000)
	Ed01

	A5
	CCN/CSI-PRG-HL/CICS-01-MARB
	HL Programming Guide (COBOL Language for IBM CICS environment)
	Ed03

	A6
	CCN/CSI-REF-HL/C-01-MARB
	CCN/CSI HL Reference Manual
	Ed13

	A7
	CCN/CSI-REF-GSS/C-01-BING
	CCN/CSI GSS Reference Manual
	Ed05

	A8
	CCN/CSI-REF-ComD/C-01-MARB
	CCN/CSI Common Definitions Reference Manual (C language)
	Ed13

	A9
	CCN/CSI-REF-ERR-01-MARB
	CCN/CSI Error Reason Codes Reference Manual
	Ed05

	A10
	ECP1-ESS-SESS
	Security Excise System Specifications
	2.00-EN

	A11
	ECP1-ESS-TESS
	Technical Excise System Specifications
	2.03-EN

	A12
	ECP1-ESS-FRS
	Fall-back and Recovery Specification
	2.00-EN

	A13
	ECP1-ESS-PSS
	Phasing and Scope Specification
	2.12-EN

	A14
	TCE-L1-DDNTA_P32
	DDNTA for NCTS Phase 3.2 and ECS
	8.10-EN

Table 1: Applicable Documents

Note that all documents listed above are applicable to this document (and are input to this document). Any change in any of the documents above is likely to have direct and immediate consequences for this document.

DDNEA is aligned with all the Applicable documents listed in Table 1.

I.I.1.1.2 Standards

The following standards are applicable to this document:

	Ref.
	Reference
	Title

	S1
	XML standard 1.0 Release 3
	http://www.w3.org/TR/REC-xml

	S2
	Unicode standard Release 4.01
	http://www.unicode.org/versions/Unicode4.0.1/

	S3
	ISO 8859-1

ISO 8859-2

ISO 8859-4

ISO 8859-5

ISO 8859-7
	Character set standards

	S4
	RFC-1630
	Universal Resource Identifiers in WWW: A Unifying Syntax for the Expression of Names and Addresses of Objects on the Network as used in the World-Wide Web.

	S5
	RFC-1867
	Form-based File Upload in HTML

	S6
	RFC-1950
	ZLIB Compressed Data Format Specification version 3.3

	S7
	RFC-1951
	DEFLATE Compressed Data Format Specification version 1.3

	S8
	RFC-1952
	GZIP file format specification version 4.3

	S9
	RFC-2045
	Multipurpose Internet Mail Extensions (MIME) Part One: Format of message Bodies

	S10
	RFC-2046
	Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

	S11
	RFC-2047
	MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header Extensions for Non-ASCII Text

	S12
	RFC-2048
	Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures

	S13
	RFC-2049
	Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance Criteria and Examples

	S14
	RFC-2068
	Hypertext Transfer Protocol—HTTP/1.1

	S15
	XML Schema 1.0
	http://www.w3.org/TR/xmlschema-0/

	S16
	SOAP 1.2
	http://www.w3.org/TR/soap12-part0/

	S17
	SOAP 1.1
	http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

	S18
	Web Services Description Language (WSDL) 1.1
	http://www.w3.org/TR/wsdl

	S19
	XML-binary Optimized Packaging
	http://www.w3.org/TR/xop10/

	S20
	SOAP Message Transmission Optimization Mechanism
	http://www.w3.org/TR/soap12-mtom/

Table 2: Applicable Standards

I.I.1.2 Reference Documents and Standards

I.I.1.2.1 Documents

The following documents are also of interest to the NEA designer:

	Ref.
	Reference
	Title
	Release

	R1
	ECP1-ESS-GLT
	Glossary of Terms
	1.01-EN

	R2
	ECP1-ESS-SEP
	Security Policy Document
	2.02-EN

	R3
	CCN/CSI-OVW-GEN-01-MARB
	CCN/CSI System Overview
	Ed09

	R4
	CCN/CSI-AD-GEN-01-MARB
	CCN/CSI Architecture Design
	Ed07

	R5
	CCN/CSI-TRA-CSI-01
	CCN/CSI Course Notes (mod1 for Cobol)
	Ed03

	R6
	CCN/CSI-TRA-CSI-01
	CCN/CSI Course Notes (mod2 for Java)
	Ed03

	R7
	CCN/CSI-TRA-CSI-01
	CCN/CSI Course Notes (mod3 for C)
	Ed01

	R8
	CCN/CSI-ACG-GEN-01-MARB
	CCN/CSI Application Configuration Guide
	Ed07

	R9
	CCNCSI-SIG-SRA-01
	Software Installation Guide - Statistics Receiver Application
	Ed00

	R10
	CCN-CPRG-IAS
	CCN Intranet Services - Programmer’s Guide
	1.00-EN

	R11
	ECP2-EMCSDEV-SC01-SRD-SEEDv1
	System Requirements Definition for SEEDv1
	1.10

	R12
	ECP2-FITSDEV2-TA-SRD
	System Requirements Definition for Testing Application
	1.20

Table 3: Reference Documents

I.I.2 Definitions

I.I.2.1 Definitions

Definitions of many of the terms used in this document may be found in the “Glossary of Terms” ((R1]).

I.I.2.2 Terminology

A number of terms are used with a very specific meaning in this document:

	Name
	Description

	Codelist
	A set of discrete values. Some Data Items can only contain a value chosen from a set of discrete values, in which case they will have an associated codelist.

	Data Group
	A Data Group is a part of the Technical Message Structure; it groups Data Items related to the same subject and it is denoted by a Data Group name.

	Data Item
	A Data Item is an elementary (atomic) piece of information; part of a Data Group.

	Functional Message Structure (FMS)
	Logical data structure of an Information Exchange, as defined in FESS.

	Information Exchange
	A logical exchange of information between two locations. An Information Exchange is the conceptual exchange of information between two organisations, independent of its physical means.

	Location
	A location is the place where the Excise business is performed.

	Message formatting
	Representation (of a Technical Message Structure) in or mapping to exchange syntax (e.g. XML).

	Message transport
	The sending (and reception) of a formatted message across a communications platform (such as CCN/CSI)

	Organisation
	An organisation is a number of individuals acting in a concerned way towards a common business purpose with allocated roles and responsibilities. An organisation can have one or more roles of a specific type.

	Reference Data
	A collection of discrete data, maintained by the SEED application and that can be sent to a NEA as an IE734. Although this term is sometimes used in order to denote any data maintained by SEED, DDNEA will use it in the narrow sense defined above.

	Technical Message Structure (TMS)
	The data structure of the Information Exchange as it needs to be implemented. A TMS is a structure (and hierarchy) of Data Groups.

	Time Sequence Diagram
	This diagram shows EMCS roles interactions arranged in time sequence. In particular, it shows the EMCS roles participating in the interaction and the sequence of messages exchanged.

	Collaboration Diagram
	This diagram describes a pattern of interaction among EMCS roles; it shows the EMCS roles participating in the interaction by their links to each other and the messages they send to each other.

Table 4: Terminology

I.I.2.3 Acronyms and Abbreviations

The following acronyms are used in this document:

	Acronym
	Description

	AAD
	Administrative Accompanying Document

	API
	Application Programming Interface

	ARC
	AAD Reference Code

	BCC
	Business Communication Channels

	CCN
	Common Communication Network

	CD
	Common Domain

	CDEA
	Centrally Developed Excise Application

	CDIA
	CCN/TC Directory Administrator

	CLD
	Collaboration Diagram

	CoA
	Confirm on Arrival

	CoD
	Confirm on Delivery

	CONTRL
	Syntax and service report XML message

	COS
	Central Operation Specification

	CPT
	Central Project Team

	CS/MIS
	Central Services - Management Information System

	CS/RD
	Central Services Reference Data

	CSI
	Common Systems Interface

	CSIDD
	CCN/CSI Data Descriptor

	DDNEA
	Design Document for National Excise Applications

	DG TAXUD
	TAXation and Customs Union DG

	DTD
	Document Type Definition

	EC
	European Community

	ECP
	Excise Computerisation Project

	ECS
	Export Control System

	ELO
	Excise Liaison Office

	EMCS
	Excise Movement and Control System

	EMCS-CO
	Excise Movement and Control System - Central Operations

	ETA
	Excise Test Application

	EXC
	Exception Report

	EXP
	Expiration Report

	FESS
	Functional Excise System Specification

	FMS
	Functional Message Structure

	FRS
	Fallback and Recovery Specification

	FS
	Functional Stage

	GLT
	Glossary of Terms

	GMT
	Greenwich Mean Time

	GSS
	Generic Security Services

	GUI
	Graphical User Interface

	HTML
	HyperText Markup Language

	HTTP
	HyperText Transfer Protocol

	HTTPS
	HTTP over SSL

	IE
	Information Exchange

	ISO
	International Standards Organisation

	IT
	Information Technology

	KEL
	Known Error List

	LRN
	Local Reference Number

	LSO
	Local Security Officer

	MD5
	Message Digest 5

	MIME
	Multipurpose Internet Mail Extensions

	MS
	Member State

	MSA
	Member State Administration

	NACK
	Non-ACKnowledgement service message

	NCTS
	New Computerised Transit System

	NDEA
	Nationally Developed Excise Application

	NEA
	National Excise Application

	ORO
	Occasionally Registered Operator

	PRO
	Permanent Registered Operator

	PSS
	Phasing and Scope Specification

	QoS
	Quality of Service

	RD
	Reference Data

	RoR
	Report of Receipt

	SD
	Scope Document

	SEED
	System for Exchange of Excise Data

	SEP
	Security Policy

	SESS
	Security Excise System Specification

	SETA
	Standard Excise Test Application

	SGML
	Standard Generalised Markup Language

	SMTP
	Simple Mail Transfer Protocol

	SRO
	System Requirements Overview

	SSL
	Secure Socket Layer

	STD
	State Transition Diagram

	TC
	Technical Centre

	TCP/IP
	Transmission Control Protocol / Internet Protocol

	TESS
	Technical Excise System Specification

	TMS
	Technical Message Structure

	TSD
	Time Sequence Diagram

	UC
	Use Case

	UML
	Unified Modelling Language

	URI
	Universal Resource Identifier

	UTF
	UCS Transformation Format

	VAT
	Value Added Tax

	VIES
	VAT Information Exchange System

	WS
	Web Service

	WWW
	World Wide Web

	XML
	Extensible Markup Language

	XSD
	XML Schema Definition

Table 5: Acronyms and Abbreviations

I.I.3 Symbolism and Conventions Used

This chapter presents the symbolism used in this document. It is necessary to understand this section before reading the remaining sections. An explanation of symbolism used in the appendices can be found at the beginning of the relevant Appendix.

I.I.3.1 Time Sequence Diagrams

The Information Exchange sequences are presented using UML Time Sequence Diagrams (TSD) and UML Collaboration Diagrams (CLD). The Time Sequence Diagrams and Collaboration Diagrams visualise the Information Exchange sequence between all locations involved in a particular scenario for an excise movement. Each type of interaction diagram presents a different aspect of the information exchange. Finally, the involved participants in a scenario are illustrated using business-modelling elements based on the UML profile for business modelling.

The used business modelling elements are the following:

	Name
	Notion
	Icon (Example)
	UML Stereotype

	Business Worker
	A business worker is an abstraction of software or even a system that is a composite of these and represents a role performed within business use case realisations. A business worker collaborates with other business workers, is notified of business events and manipulates business entities to perform its responsibilities. In EMCS context, a business worker is a MSA application, which has active participation in the realisation of use cases as these are defined in FESS. Each business worker (MSA application) collaborates with other business workers (MSA applications) through the Common Domain and manipulates business entities such as data, messages in order to perform some activities (its responsibilities) as these are defined in FESS.
	[image: image1.emf] : System: MSA application : System: MSA application

	<<business worker>>

	Business Actor
	A business actor represents a role played in relation to the business by someone or something (application) in the business environment. In EMCS, this is used for the Economic Operators, who play a significant role in the EMCS business but their applications are out of the scope of the DDNEA since the boundaries is the Common Domain. Please note that The Economic Operators (Consignor and Consignee) are presented in the scenarios in order to have an overview of the different message exchanges as well as of some exceptional cases. However, the implementation of Economic Operator’s applications is not in the scope of the DDNEA since they are in the external domain.
	[image: image2.emf]Economic Operator

(from External Users)

	<<business actor>>

Table 6: UML business modelling elements

Examples of scenarios for excise movements are the Basic Scenario and the Change of Destination.

As Time Sequence Diagrams and Collaboration Diagrams can only be used to show one possible flow of Information Exchanges, a large number of TSDs and CLDs are required to specify all allowed Information Exchange sequences.

The following roles that can be taken by organisations, per functional stage are used in this version of DDNEA:

	Role type
	Role name
	Organisation
	FS0
	FS1
	UML Stereotype

	MSA dispatch application
	Member State Administration of Dispatch
	Member State Administration
	
	[image: image3.emf]
	<<business worker>>

	MSA destination application
	Member State Administration of Destination
	Member State Administration
	[image: image4.emf]
	[image: image5.emf]
	<<business worker>>

	Consignor
	Any Authorised Warehouse keeper
	Economic Operator
	
	[image: image6.emf]
	<<business actor>>

	Consignee
	Any Economic Operator Authorised Warehouse keeper, Registered Consignee, and Temporary Registered Consignee at Destination
	Economic Operator
	[image: image7.emf]
	[image: image8.emf]
	<<business actor>>

Table 7: Role types and organisations

Please note that the infrastructure of a MSA is not specified in DDNEA.

For the roles of MSA of Destination and Consignee, a distinction is made in the case of Change of Destination (Section III - III.I.1.2.1 and Annex A - A.1.2.1) between the former MSA of Destination/Consignee and the new MSA of Destination/Consignee.

The TSDs and CLDs depict a particular scenario of message exchanges and may include one or more FESS use-cases.
The components of a Time Sequence Diagram (TSD) are shown in the following figure:

[image: image9.wmf] : Economic Operator

 : Economic Operator

 : System: MSA application

 : System: MSA application

1: Send Msg(IENAME[ARGUMENTS])

2: Validate Msg Structure()

3: Validate Msg Content()

Figure 1: Time Sequence Diagram

In a TSD, each role is represented by an icon (according to Table 7) with the name of that role (Figure 1) and a vertical line, called the “lifeline”. The name “lifeline” comes from the UML-concept that an object’s life can be ended. This does not apply here.

An arrow between the lifelines represents each Information Exchange (message) between two roles, where the arrow shows the direction of the Information Exchange. Attached to the arrow, a label gives the sequence number of this Information Exchange in the scenario, the operation used to pass the message, the coded name and number of Information Exchange as well as any argument passed with the Information Exchange.

The above figure (Figure 1) illustrates that the “Economic Operator” submits a message to the MSA application using the “Send Msg” operation. The name of the IE that is sent to MSA application is indicated inside the brackets of the “Send Msg” operation. Moreover, the Square Brackets in the message above (Figure 1) indicate some arguments of the message such as in the case of IE818, which contains the acceptance of the delivery (Send Msg (IE818: C_DEL_DAT [Acceptance])).

The word “System:” has been added before the name of the MSA application (business worker name) to indicate that the particular business worker is a system and not a human. Moreover, the arrow with half arrowhead indicates that the message is asynchronous.

Finally, in the State Transition Diagrams and Collaboration Diagrams of this document, two types of operations have been used indicating two different types of validations. These should be performed by the MSA applications on a received message when it is a draft and when it is duly valid (after the successful validation of the draft). In the first case, when a draft is sent by the Economic Operator, the MSA application uses the operation “Validate Msg Structure ()” to check the validity of the message against the corresponding XSD of DDNEA (this includes the structure validation as well as the validation of technical codelists) and the operation “Validate Msg Content ()” to check the business validity of the draft (against rules, conditions, business codelists, etc.). In the case where a message is received as a result of a successful validation of the draft from the sender MSA application, the recipient MSA application shall check only the message structure using the “Validate Msg Structure ()” operation. The exceptional cases are described in chapter III.I.2 of Section III and in chapter A.2 of Annex A, indicating message exchanges when at least one of the aforementioned validations is not completed successfully.

The narrow rectangles on the lifelines are called ‘focus of control’. It represents the relative time that the control of the flow is focused in that role, thus the time that the role is directing messages. When more than one message starts from (or ends in) the same focus of control, this means that these messages are sent (or received) shortly after each other. The arrows will appear close to each other in that case as well. Please note that in this case the sequence of sending the messages is not important. Therefore, the sequence used to represent them in the TSDs is only indicative. When for two messages exchanged the sequence is important they are presented to start from a different ‘focus of control’.

A similar notation is used in the Collaboration Diagrams.

I.I.3.2 State Transition Diagrams

The State Transition Diagrams (STD) consists of states and transitions between those states. Each state represents the state of an excise movement for a particular MSA role. Each transition starts at a given state and goes to another state and is triggered by the exchange of a message between two organisations. Only transitions that are triggered by the exchange of a message are shown on these State Transition Diagrams.

Every State Transition Diagram in this document is related to one particular MSA role only. For every role, it is defined how state transitions take place according to events (such as the reception of a message from another role).

States are shown as a box and an arrow shows transitions.

[image: image10.emf]Accepted

IE815: N_AAD_SAB

IE813: C_UPD_DAT

Cancelled

IE810: C_CAN_DAT

Figure 2: Example of State Transition Diagram

The State transitions show the event for these transitions. In the example above, the event for the transition from the “Accepted” state to the “Cancelled” state is the reception of cancellation message (IE810: C_CAN_DAT).

In some cases, an argument is indicated in the event as in the case of transition from “Accepted” to “Accepted” (transition to self). In this case, the state is retained to “Accepted” when the e-AAD response is either positive or negative.

In EMCS, the set of names of the states in the State Transition Diagrams is a subset of those contained in FESS [A1]. A number of additional technical states have also been defined in this document. The STD for Core Business - FS1 can be found in Section III.I.3 while for Core Business - FS0 in Section A.3.

I.I.3.3 Data dictionary

The data dictionary, contained within this DDNEA, defines 3 specific items:

· Data Items;

· Data Groups;

· Codelists (sets of discrete values).

A number of naming and spelling conventions and rules have been maintained for these throughout this document. The rules are as follows:

I.I.3.3.1 Data Items

Every name shall start with a capital (uppercase) letter.

Every name can contain letters, digits, and a number of additional characters: the space character, the brackets “(” and “)”, the ampersand character “&”, the underscore character “_”, and the slash character “/”. No other characters are allowed.

Within the name, lowercase letters shall preferably be used (except for the first character and except for abbreviations that will always be in uppercase).

I.I.3.3.2 Data Groups

Every name shall start with a letter or with the bracket “(“character.

Every name can contain letters, digits, and a number of additional characters: the space character, the brackets “(” and “)”, the ampersand character “&”, the underscore character “_”, and the slash character “/”. No other characters are allowed.

Only uppercase letters are allowed.

I.I.3.3.3 Codelists

The same rules as for Data Items will apply.

Section II Scope of development

This section discusses the items that need to be developed in EMCS Phase 2 applications.

II.I.1 Information Exchange Overview for EMCS Phase 2

The scope of EMCS for Phase 2 is depicted in Appendix A per FS. In particular:

· Appendix A1 summarises the various requirements for any NDEA and presents an overall view of the Information Exchanges to be supported in FS0 and FS1 of EMCS for Phase 2, as defined in PSS [A13].

· Appendix A2 performs a breakdown of the overall development for the EMCS Phase 2 in the different Business Processes (Core Business, Central Services and System Administration). Moreover, it classifies the messages into business and technical. The Appendix A2 is derived from the full message scope, which is defined in Appendix A1.

II.I.2 Information Exchange Map of EMCS Phase 2 for FS0

The Information Exchanges to be supported in FS0 and the different parties involved for this functional stage are summarised in the diagram below (Figure 3). More detailed specifications of those message exchanges are presented in the Annex A. Please note that this diagram is not a Time Sequence Diagram; it only summarises the different possible sources and destinations for the various Information Exchanges. This diagram highlights in which Domain the different exchanges are to be foreseen. The National Domain has been added only to indicate the location of NEA.

[image: image11.emf]Central Services

(CEA)

NEA

(Destination)

Consignee

SEED

Data

EMCS-CS/MIS

Reference

Data

External

Domain

NEA

(Dispatch)

Consignor

IE801

IE818

IE813

IE803

IE802

IE704

IE818

IE837

IE704

IE801

IE802

IE803

IE810

IE813

IE818

EUROPA

Information Exchange Map of EMCS Phase 2 for FS0

NEA to SEED (bi-directional)

Ec.Operator to NEA (bi-directional)

CSI

CSI / HTTP

HTTP / SMTP

NEA to EMCS-CS/MIS (bi-directional)

CSI

IE815

IE810

IE813

IE837

National

Domain

External

Domain

National

Domain

Common Domain

IEs in Italicsare disseminated to all NEAs

NEA Disp to NEA Des (bi-directional)

SEED

Member State

in FS1

CCN

IE701

IE734

IE702

IE917

IE701

IE713

Common Domain

Common Domain

IE818

IE837

IE905

IE904

IE906

IE917

IE702

IE713

IE714

IE917

IE801

IE802

IE810

IE813

IE821

IE837

IE904

IE905

IE906

IE917

IE934

Figure 3: Information Exchange Map of EMCS Phase 2 for FS0

II.I.3 Information Exchange Map of EMCS Phase 2 for FS1

The Information Exchanges to be supported in FS1 and the different parties involved for this functional stage are summarised in the diagram below (Figure 4). More detailed specifications of those message exchanges are presented in Section III. Please note that this diagram is not a Time Sequence Diagram; it only summarises the different possible sources and Destinations for the various Information Exchanges. This diagram highlights in which Domain the different exchanges are to be foreseen. The National Domain has been added only to indicate the location of NEA.

[image: image12.emf]CCN

Central Services

(CEA)

NEA

(Destination)

Consignee

SEED

Data

EMCS-CS/MIS

Reference

Data

External

Domain

NEA

(Dispatch)

Consignor

IE701

IE734

IE702

IE917

IE701

IE713

IE801

IE818

IE813

IE803

IE802

IE704

IE818

IE837

IE704

IE801

IE802

IE803

IE810

IE813

IE818

EUROPA

Information Exchange Map of EMCS Phase 2 for FS1

NEA to SEED (bi-directional)

Ec.Operator to NEA (bi-directional)

CSI

CSI / HTTP

HTTP / SMTP

NEA to EMCS-CS/MIS (bi-directional)

CSI

IE815

IE810

IE813

IE837

National

Domain

External

Domain

National

Domain

Common Domain

Common Domain

Common Domain

IE818

IE829

IE837

IE839

IE905

IE904

IE906

IE917

IEs in Italicsare disseminated to all NEAs

NEA Disp to NEA Des (bi-directional)

IE702

IE713

IE714

IE917

SEED

IE801

IE802

IE810

IE813

IE821

IE837

IE904

IE905

IE906

IE917

IE934

Figure 4: Information Exchange Map of EMCS Phase 2 for FS1

Section III Core Business - Functional Stage (FS) 1

The following section contains a detailed specification of the message exchange protocols to be foreseen for the EMCS Core Business area in FS1. These exchange protocols shall define the valid sequence of the message exchanges between the NEAs based on the business processes as these are defined in FESS [A1].

The different Time Sequence Diagrams should be read in conjunction with the State Transition Diagrams that have been included in chapter III.I.3. Every application should implement both the Time Sequence Diagrams and the State Transition Diagrams logic.

Finally, it shall be noted that the following scenarios include functionality (timers, etc.) which according to the SD [A2] is optional in case the MSAs decide to implement it based on the national needs. Moreover, the scenarios below consider that the Consignee is PRO, which implies the availability of an Electronic Data Interchange (EDI) interface between the MSA destination application and the Consignee.
III.I.1 Central Circuit Scenarios

This section aims to specify the most important message exchange protocols for Functional Stage 1. The identification of the following scenarios has been based on the “Central Circuit” uses cases of FESS [A1], which are in the scope of FS1 according to SD [A2].

Please note that two types of operations have been used in the diagrams of this chapter indicating two different types of validations that should be performed by the MSA applications on a received message when this is draft and when it is duly valid (after the successful validation of the draft). In the first case, when a draft is sent by the Economic Operator, the MSA application uses the operation “Validate Msg Structure ()” to check the validity of the message against the corresponding XSD of DDNEA (this includes the structure validation as well as the validation of technical codelists) and the operation “Validate Msg Content ()” to check the business validity of the draft (against rules, conditions, business codelists, etc.). In the case where a message is received as a result of a successful validation of the draft from the sender MSA application, the recipient MSA application shall check only the message structure using the “Validate Msg Structure ()” operation. The exceptional cases are described in chapter III.I.2 indicating message exchanges when at least one of the aforementioned validations is not completed successfully.

III.I.1.1 Basic Scenario

This scenario describes the message exchange protocol when the Consignor is a warehouse keeper and the Consignee is a warehouse keeper or a registered Consignee or a temporary registered Consignee.

In this scenario, all validations of the submitted e-AAD and Report of Receipt pass successfully.

Moreover, this scenario excludes the cases where the goods are placed under a Customs procedure (import and export cases).

III.I.1.1.1 Submission and registration of e-AAD (UC2.01)
According to this scenario, the Consignor submits a draft e-AAD (IE815: N_AAD_SUB) to the MSA dispatch application. The message content and structure are validated by the MSA dispatch application. It should be noted that although the submission occurs before the actual dispatch of goods, if the e-AAD is submitted in deferred mode, then the actual dispatch of goods would have preceded the draft e-AAD submission. The validation of the submitted draft e-AAD passes successfully and the MSA dispatch application disseminates the validated e-AAD (IE801: C_AAD_VAL) to the MSA destination application and to the Consignor. Finally, the state of the movement at the MSA of dispatch is set to “Accepted” and the timer TIM_AAD is initiated.

Upon the reception of the validated e-AAD (IE801: C_AAD_VAL) from the MSA dispatch application, the MSA destination application stores the e-AAD and sets the state of the e-AAD at MSA of Destination to “Accepted”. Finally, the MSA destination application forwards the e-AAD (IE801: C_AAD_VAL) to its Consignee.

III.I.1.1.1.1 Submission of Report of Receipt (UC2.06)
When the goods arrive at their destination, the Consignee acknowledges the receipt of goods by submitting the draft Report of Receipt (RoR) (IE818: C_DEL_DAT) to the MSA destination application for validation. This RoR will indicate the acceptance of delivery (with or without shortages) or the refusal of delivery.

III.I.1.1.1.2 Delivery Accepted

Assuming that, the validation process passes successfully and the delivery is accepted, the MSA destination application changes the state of the e-AAD at MSA of Destination to “Delivered” and forwards the validated Report of Receipt (IE818: C_DEL_DAT) to the MSA dispatch application. Finally, the MSA destination application sends back the validated RoR to the Consignee as a confirmation.

Upon the reception of delivery notification message (IE818: C_DEL_DAT), the MSA dispatch application changes the state of the e-AAD to “Delivered” after validating successfully the received message. Moreover, if the TIM_AAD timer has not expired, the MSA dispatch application stops it otherwise it resets the flag raised locally at its expiration. In addition, the MSA dispatch application forwards the delivery notification (IE818: C_DEL_DAT) to the Consignor to inform him/her for the acceptance of delivery and in series the discharge of the movement.

The scenario with the acceptance of delivery is depicted in Figure 5 and Figure 6:
[image: image13.wmf] : Consignor

 : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee

 : Consignee

1: Send Msg(IE815: N_AAD_SUB)

4: Send Msg(IE801: C_AAD_VAL)

5: Send Msg(IE801: C_AAD_VAL)

7: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE818: C_DEL_DAT [Acceptance])

11: Send Msg(IE818: C_DEL_DAT [Acceptance])

14: Send Msg(IE818: C_DEL_DAT [Acceptance])

12: Send Msg(IE818: C_DEL_DAT [Acceptance])

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

Figure 5: TSD - Submission of e-AAD of which delivery is “Accepted” (with or without shortages)

[image: image14.wmf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

13: Validate Msg Structure()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818: C_DEL_DAT [Acceptance])

4: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE818: C_DEL_DAT [Acceptance])

7: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE818: C_DEL_DAT [Acceptance])

8: Send Msg(IE818: C_DEL_DAT [Acceptance])

Figure 6: CLD - Submission of e-AAD of which delivery is “Accepted” (with or without shortages)

III.I.1.1.1.3 Delivery Refused

If the RoR contains refusal of delivery, then, the MSA destination application changes the state of the concerned e-AAD to “Refused” after validating successfully the received message and disseminates the delivery notification message (IE818: C_DEL_DAT) to the MSA dispatch application and to the Consignee as a confirmation.

When the MSA dispatch application receives the RoR (IE818: C_DEL_DAT) reporting the refused delivery, it updates the state of this e-AAD at the MSA of dispatch to “Refused” and forwards the delivery notification to the Consignor. Moreover, it starts the timer TIM_CHS waiting for the change of destination from the Consignor. This case is described in chapter III.I.1.3.

The scenario with the refusal of delivery is depicted in Figure 7 and Figure 8:
[image: image15.wmf] : Consignor

 : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee

 : Consignee

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818: C_DEL_DAT [Refusal])

4: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE818: C_DEL_DAT [Refusal])

7: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE818: C_DEL_DAT [Refusal])

12: Send Msg(IE818: C_DEL_DAT [Refusal])

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

Figure 7: TSD - Submission of e-AAD of which delivery is “Refused”

[image: image16.wmf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

13: Validate Msg Structure()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818: C_DEL_DAT (Refusal))

4: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE818: C_DEL_DAT [Refusal])

7: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE818: C_DEL_DAT (Refusal))

8: Send Msg(IE818: C_DEL_DAT [Refusal])

Figure 8: CLD - Submission of e-AAD of which delivery is “Refused”

III.I.1.1.1.4 Delivery Partially Refused

If the Report of Receipt contains partial refusal of the delivery, then the MSA destination application changes the state of the concerned e-AAD to “Partially Refused” after the received message was successfully validated. This acknowledgement receipt (IE818: C_DEL_DAT) is then sent to the MSA Dispatch application and to the Consignee for confirmation.

Upon receipt of the Report of Receipt, (IE818: C_DEL_DAT) including the indicator “receipt partially refused”, the MSA dispatch application changes the state of the e-AAD to “Partially Refused”. Moreover, it starts at timer (TIM_CHS) to expire at the limit date for submission of a change of destination. This case is described in Chapter III.I.1.3.1.

Time Sequence Diagram and Collaboration Diagram for the partial refusal case are depicted in Figure 9 and Figure 10 respectively:
[image: image17.emf] : Consignor : Consignor

 : System: MSA dispatch application : System: MSA dispatch application

 : System: MSA destination application : System: MSA destination application

 : Consignee : Consignee

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

5: Send Msg(IE801:C_AAD_VAL)

13: Validate Msg Structure()

14: Send Msg(IE818:C_DEL_DAT [Partial Refusal])

4: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE818:C_DEL_DAT [Partial Refusal])

7: Send Msg(IE801:C_AAD_VAL)

12: Send Msg(IE818:C_DEL_DAT [Partial Refusal])

8: Send Msg(IE818:C_DEL_DAT [Partial Refusal])

Figure 9: TSD - Submission of e-AAD of which delivery is “Partially Refused”

[image: image18.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

1: Send Msg(IE815:N_AAD_SUB)

5: Send Msg(IE801:C_AAD_VAL)

14: Send Msg(IE818:C_DEL_DAT [Partial Refusal])

4: Send Msg(IE801:C_AAD_VAL)

11: Send Msg(IE818:C_DEL_DAT [Partial Refusal])

7: Send Msg(IE801:C_AAD_VAL)

12: Send Msg(IE818:C_DEL_DAT [Partial Refusal])

8: Send Msg(IE818:C_DEL_DAT [Partial Refusal])

Figure 10: CLD - Submission of e-AAD of which delivery is “Partially Refused”
III.I.1.2 Valid Business Scenarios before the reception of Report of Receipt

All the scenarios of this section are valid when the e-AAD has been submitted and accepted by the MSA dispatch application but no Report of Receipt (IE818: C_DEL_DAT) has been received yet.

III.I.1.2.1 Change of Destination (UC2.05)

The Consignor may change the destination of an “Accepted” or “Exporting” e-AAD at any time after the dispatch of goods but before the reception of the RoR from the Consignee. The new destination can be a tax warehouse or the premises of a registered Consignee or of a temporary registered Consignee or a place of direct delivery or export.

There are three possible change of destination scenarios, either:

· the MS of Destination changes: this implies that both Consignee and Place of Delivery change; or

· the MS of Destination does not change but the Consignee (hence the place of delivery) changes; or

· neither the MS of Destination nor the Consignee change, but only the Place of Delivery changes.

All the possible change of destination scenarios are described below.

III.I.1.2.1.1 Change MS of Destination

The assumption for this scenario is that the Consignor has initiated an excise movement according to the procedure described in Chapter III.I.1.1.1 and the e-AAD is already “Accepted”or “Exporting”.
After the dispatch of goods, the Consignor initiates the change of destination process to submit an update message (IE813: C_UPD_DAT) to change the MS of Destination. The MSA dispatch application receives the draft update message (IE813: C_UPD_DAT) and validates it.

Assuming that the draft update is valid, the MSA dispatch application sends the update message (IE813: C_UPD_DAT) back to the Consignor as an acknowledgement as well as to the former MSA destination application as a notification of the change of destination.

In addition, the MSA dispatch application generates and sends to the new MSA of Destination an e-AAD (IE801: C_AAD_VAL) that includes the following information:

· The ARC of the update message (IE813: C_UPD_DAT), which is the same as in the original e-AAD;
· The updated destination details (new Consignee and Place of Delivery), as declared in the update message (IE813: C_UPD_DAT).

Moreover, in case the journey time has changed, the MSA dispatch application updates the TIM_AAD timer if the expected end of the movement is still in the future or restarts the timer if the expected end of the movement is in the past. Finally, the MSA dispatch application retains the state of the e-AAD to “Accepted”.

Upon the reception of the update message (IE813: C_UPD_DAT), the former MSA destination application validates the structure of the received message. Assuming that the message structure validation passes successfully, the former MSA destination application sets the state of e-AAD to “Diverted” and sends a notification message (IE803: C_AAD_NOT) to former Consignee to inform him that the movement has changed destination.
At the other side, the new MSA destination application receives and validates the e-AAD (IE801: C_AAD_VAL). Assuming that the validation passes successfully, the new MSA destination application sends the e-AAD (IE801: C_AAD_VAL) to the new Consignee to inform him that he is the new Consignee of the movement. Moreover, the new MSA destination application sets the state of the movement to “Accepted”.
The Consignor may repeat this change of MS of Destination satisfying the aforementioned preconditions until the reception of RoR from the new Consignee. The procedure of RoR is described in Chapter III.I.1.1.1.

The scenario to change the MS of Destination is depicted in Figure 11 and Figure 12:

[image: image19.wmf] : Consignor

 : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee

 : Consignee

NEW : System: MSA destination

application

NEW : System: MSA destination

application

NEW : Consignee

NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL)

13: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE813: C_UPD_DAT)

7: Send Msg(IE801: C_AAD_VAL)

15: Send Msg(IE803: C_AAD_NOT)

11: Send Msg(IE801: C_AAD_VAL)

17: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE813: C_UPD_DAT)

18: Send Msg(IE818: C_DEL_DAT)

21: Send Msg(IE818: C_DEL_DAT)

24: Send Msg(IE818: C_DEL_DAT)

22: Send Msg(IE818: C_DEL_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

16: Validate Msg Structure()

14: Validate Msg Structure()

19: Validate Msg Structure()

20: Validate Msg Content()

23: Validate Msg Structure()

Figure 11: TSD - Change of MS of Destination following the Submission of e-AAD

[image: image20.wmf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

NEW : System: MSA destination application

NEW : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

9: Validate Msg Structure()

10: Validate Msg Content()

23: Validate Msg Structure()

6: Validate Msg Structure()

14: Validate Msg Structure()

16: Validate Msg Structure()

19: Validate Msg Structure()

20: Validate Msg Content()

1: Send Msg(IE815: N_AAD_SUB)

8: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

13: Send Msg(IE813: C_UPD_DAT)

24: Send Msg(IE818: C_DEL_DAT)

4: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE813: C_UPD_DAT)

11: Send Msg(IE801: C_AAD_VAL)

21: Send Msg(IE818: C_DEL_DAT)

7: Send Msg(IE801: C_AAD_VAL)

15: Send Msg(IE803: C_AAD_NOT)

17: Send Msg(IE801: C_AAD_VAL)

22: Send Msg(IE818: C_DEL_DAT)

18: Send Msg(IE818: C_DEL_DAT)

Figure 12: CLD - Change of MS of Destination following the Submission of e-AAD
III.I.1.2.1.2 Change of Consignee (not the MS of Destination)

The assumption for this scenario is that the Consignor has initiated an excise movement according to the procedure presented in Chapter III.I.1.1.1 and the e-AAD is already in the “Accepted” state or “Exporting”.
After the dispatch of goods, the Consignor initiates the change of destination process to change the Consignee (hence, the Place of Delivery as well) and not the MS of Destination. In that case, the Consignor sends the draft update (IE813: C_UPD_DAT) for validation to the MSA dispatch application.

Assuming that the draft update is valid, the MSA dispatch application sends the update message (IE813: C_UPD_DAT) back to the Consignor as an acknowledgement.

In addition, the MSA dispatch application sends to the unchanged MSA of Destination an e-AAD (IE801: C_AAD_VAL) that includes the following information:

· The ARC of the update message (IE813: C_UPD_DAT)
;

· The updated destination details (new Consignee and Place of Delivery), as declared in the update message (IE813: C_UPD_DAT).

Moreover, in case the journey time has changed, the MSA dispatch application updates the TIM_AAD timer if the expected end of the movement is still in the future or restarts the timer if the expected end of the movement is in the past. Finally, the state of the e-AAD at the MSA of Dispatch remains “Accepted”.

Upon the reception of the e-AAD (IE801: C_AAD_VAL), the MSA destination application checks and confirms that the included ARC corresponds to a movement in the “Accepted” state. Following, the MSA destination application validates the structure of the received e-AAD (IE801: C_AAD_VAL). In addition, the MSA destination application checks whether the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) has already been received. Assuming that the message structure validation passes successfully and that the e-AAD (IE801: C_AAD_VAL) instance is unique (it contains a unique “(HEADER) E-AAD.Sequence Number”), the MSA destination application accepts and processes the message. The state of the e-AAD at the unchanged MSA of Destination is retained to “Accepted”.

Finally, the MSA destination application sends:

· A notification message (IE803: C_AAD_NOT) to the former Consignee to inform him that the consignment has changed destination;

· The e-AAD (IE801: C_AAD_VAL) to the new Consignee to notify him that he is the new Consignee of the consignment.

The Consignor may repeat this change of Consignee satisfying the aforementioned preconditions until the reception of RoR from the new Consignee. The procedure of RoR is described in Chapter III.I.1.1.1.

The scenario to change the Consignee but not the MS of Destination is depicted in Figure 13 and Figure 14:

[image: image21.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

NEW : Consignee NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL)

4: Send Msg(IE801: C_AAD_VAL)

7: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE803: C_AAD_NOT)

8: Send Msg(IE813: C_UPD_DAT)

12: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE813: C_UPD_DAT)

22: Send Msg(IE818: C_DEL_DAT)

15: Send Msg(IE801: C_AAD_VAL)

16: Send Msg(IE818: C_DEL_DAT)

19: Send Msg(IE818: C_DEL_DAT)

20: Send Msg(IE818: C_DEL_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

18: Validate Msg Content()

17: Validate Msg Structure()

21: Validate Msg Structure()

New Consignee

and new Place of

Delivery

Figure 13: TSD - Change of Consignee following the Submission of e-AAD (MS of Destination unchanged)

[image: image22.emf] : Consignor

 : System: MSA dispatch application : System: MSA destination application

 : Consignee

NEW : Consignee

2: Validate Msg Structure()

3: Validate Msg Content() 6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content() 20: Validate Msg Content()

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

18: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

19: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

7: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

21: Send Msg(IE803: C_AAD_NOT)

8: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

22: Send Msg(IE801: C_AAD_VAL)

Figure 14: CLD - Change of Consignee following the Submission of e-AAD (MS of Destination unchanged)

In the case that the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) with the same content has already been received, the MSA destination application ignores the duplicate instance.

In the exceptional case that the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) but with different content has already been received, the MSA destination application rejects the message via an IE906 reporting an out-of-sequence violation (Chapter III.I.2.1 Exception Handling in Common Domain).
III.I.1.2.1.3 Change of Place of Delivery

The assumption for this scenario is that the Consignor has initiated an excise movement according to the procedure in Chapter III.I.1.1.1 and the e-AAD is already “Accepted” or “Exporting”.

After the dispatch of goods, the Consignor initiates the change of destination process to change the Place of Delivery. In that case, the Consignor sends the draft update (IE813: C_UPD_DAT) for validation to the MSA dispatch application. The update message is found valid and the MSA dispatch application submits the update message (IE813: C_UPD_DAT) to the MSA destination application and to the Consignor as acknowledgement.

Moreover, in case the journey time has changed, the MSA dispatch application updates the TIM_AAD timer if the expected end of the movement is still in the future or restarts the timer if the expected end of the movement is in the past. Finally, the state of the e-AAD at the MSA of dispatch remains to “Accepted” state.

Upon the reception of the update message, the MSA destination application validates the structure of the received message. Assuming that the message structure validation passes successfully, the MSA destination application retains the state of e-AAD to “Accepted” and forwards the update message (IE813: C_UPD_DAT) to the Consignee.

The Consignor may repeat this change of Place of Delivery satisfying the aforementioned preconditions until the reception of RoR from the Consignee. The procedure of RoR is described in Chapter III.I.1.1.1.

The scenario to change the Place of Delivery is depicted in Figure 15 and Figure 16:

[image: image23.wmf] : Consignor

 : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee

 : Consignee

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL)

4: Send Msg(IE801: C_AAD_VAL)

7: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE813: C_UPD_DAT)

8: Send Msg(IE813: C_UPD_DAT)

11: Send Msg(IE813: C_UPD_DAT)

12: Send Msg(IE813: C_UPD_DAT)

21: Send Msg(IE818: C_DEL_DAT)

18: Send Msg(IE818: C_DEL_DAT)

15: Send Msg(IE818: C_DEL_DAT)

19: Send Msg(IE818: C_DEL_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

20: Validate Msg Structure()

Figure 15: TSD - Change of Place of Delivery following the Submission of e-AAD (Consignee unchanged)

[image: image24.wmf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

9: Validate Msg Structure()

10: Validate Msg Content()

20: Validate Msg Structure()

6: Validate Msg Structure()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

1: Send Msg(IE815: N_AAD_SUB)

8: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE813: C_UPD_DAT)

21: Send Msg(IE818: C_DEL_DAT)

4: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE813: C_UPD_DAT)

18: Send Msg(IE818: C_DEL_DAT)

7: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE813: C_UPD_DAT)

19: Send Msg(IE818: C_DEL_DAT)

15: Send Msg(IE818: C_DEL_DAT)

Figure 16: CLD - Change of Place of Delivery following the Submission of e-AAD (Consignee unchanged)

III.I.1.2.2 Cancellation of e-AAD (UC2.10)

The purpose of this scenario is to describe the communication protocol when the Consignor requests the cancellation of a recently submitted and validated e-AAD. The message exchange sequence is illustrated in Figure 17. The scenario prerequisites that a draft e-AAD has been previously submitted and the goods have NOT left the place of dispatch. It should be noted that cancellations for an e-AAD originally submitted in “Deferred mode” should not occur since electronic recovery of fallback AAD may only occur after the physical dispatch of the goods (for electronic recovery of fallback AAD forms see FRS [A12]).

The scenario also prerequisites that the e-AAD, as described in Chapter III.I.1.1.1, has been made available to all concerned direct partners in “Accepted” or in “Exporting” or in “Accepted for Export” state. Especially for the case that the e-AAD is in the “Exporting” state it must be checked that the draft e-AAD has been submitted for “Local clearance at export” (Message Type of the draft e-AAD is "Submission for export (local clearance)"). It is also assumed that all validations of the incoming messages pass successfully.
Anytime before the actual dispatch of goods, the Consignor may send a cancellation message (IE810: C_CAN_DAT) to the MSA dispatch application concerning the “Accepted” or “Exporting” or “Accepted for Export” e-AAD. The Consignor is waiting for the cancellation notification message (IE810: C_CAN_DAT) to be received from the MSA dispatch application.
The MSA dispatch application receives the draft e-AAD cancellation for validation (IE810: C_CAN_DAT). Upon successful validation of the incoming message, the MSA dispatch application updates the state of the e-AAD from “Accepted” or “Exporting” or “Accepted for Export” to “Cancelled” and forwards the cancellation notification (IE810: C_CAN_DAT) to the MSA destination application and back to the Consignor.

If the timer associated with the cancelled e-AAD (TIM_AAD) has already expired at the limit date, the MSA dispatch application resets the flag that has been raised locally at expiration time. In the opposite case, if the timer (TIM_AAD) associated with the cancelled e-AAD is still running, the MSA of dispatch application stops it.

The MSA destination application receives the cancellation notification message for validation (IE810: C_CAN_DAT). Upon successful validation of the incoming message, the MSA destination application changes the state of the e-AAD to “Cancelled” and forwards the cancellation notification (IE810: C_CAN_DAT) to the Consignee.

The cancellation of an e-AAD is always a final operation and the movement state at the MSA dispatch and destination applications is updated from “Accepted” or “Exporting” or “Accepted for Export” to “Cancelled”, which is a final state.

[image: image25.wmf] : Consignor

 : Consignor

 : System: MSA dispatch application

 : System: MSA dispatch application

 : System: MSA destination application

 : System: MSA destination application

 : Consignee

 : Consignee

1: Send Msg(IE815: N_AAD_SUB)

4: Send Msg(IE801: C_AAD_VAL)

5: Send Msg(IE801: C_AAD_VAL)

7: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE810: C_CAN_DAT)

11: Send Msg(IE810: C_CAN_DAT)

14: Send Msg(IE810: C_CAN_DAT)

12: Send Msg(IE810: C_CAN_DAT)

{Before

dispatch}

2: Validate Msg Structure()

3: Validate Msg Content()

9: Validate Msg Structure()

10: Validate Msg Content()

6: Validate Msg Structure()

13: Validate Msg Structure()

Figure 17: TSD - Submission of cancellation of e-AAD

[image: image26.wmf] : System: MSA destination application

 : Consignee

 : Consignor

 : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

9: Validate Msg Structure()

10: Validate Msg Content()

6: Validate Msg Structure()

13: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE810: C_CAN_DAT)

1: Send Msg(IE815: N_AAD_SUB)

8: Send Msg(IE810: C_CAN_DAT)

5: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE810: C_CAN_DAT)

4: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE810: C_CAN_DAT)

Figure 18: CLD - Submission of cancellation of e-AAD

III.I.1.3 Valid Business Scenarios after the reception of Report of Receipt (Refused Delivery or Partially Refused Delivery)

After the refusal or partial refusal of delivery from the Consignee through the RoR (IE818: C_DEL_DAT), the Consignor shall change the destination. The following scenarios describe the three options the Consignor has: to change the MS of Destination, the Consignee (hence, also the Place of Delivery) or the Place of Delivery.

A precondition for these scenarios is that a change of destination takes place for a movement that is either in the “Refused” state or in the “Partially Refused” state both at the MSA of Destination as well as at the MSA of Dispatch. It is also possible for the old destination to be export.
III.I.1.3.1 Change of Destination (UC2.05)

The Consignor shall change the destination of a “Refused” or “Partially Refused” e-AAD. The new destination can be a tax warehouse or the premises of a registered Consignee or of a temporary registered Consignee or a place of direct delivery or export.

There are three possible change of destination scenarios, either:

· the MS of Destination changes: this implies that both Consignee and Place of Delivery change; or

· the MS of Destination does not change but the Consignee (hence the place of delivery) changes; or

· neither the MS of Destination nor the Consignee change, but only the Place of Delivery changes.

All the possible change of destination scenarios are described below.

III.I.1.3.1.1 Change MS of Destination

This scenario describes the case where the Consignee refuses or partially refuses the delivery and the Consignor changes the MS of Destination.

The Consignor initiates the change of destination process to submit the update message (IE813: C_UPD_DAT) for the refused or partially refused delivery.

The MSA dispatch application receives the draft update message (IE813: C_UPD_DAT) and validates it.

Assuming that the draft update is valid, the MSA dispatch application sends the update message (IE813: C_UPD_DAT) back to the Consignor as an acknowledgement as well as to the former MSA destination application as a notification of the change of destination.

In addition, the MSA dispatch application generates and sends to the new MSA of Destination an e-AAD (IE801: C_AAD_VAL) that includes the following information:

· The ARC of the update message (IE813: C_UPD_DAT)
;

· The updated destination details (new Consignee and Place of Delivery), as declared in the update message (IE813: C_UPD_DAT);

· In case of change of destination for a “Partially Refused” movement, the refused quantity declared by the former Consignee in the partially refused report of receipt. Otherwise, the quantity is the same as the one in the original e-AAD (IE801: C_AAD_VAL).

Moreover, the MSA dispatch application stops the TIM_CHS timer and updates the TIM_AAD timer based on the new expected end of the movement. Finally, the state of the e-AAD at the MSA of Dispatch is updated by the MSA dispatch application from “Refused” or “Partially Refused” to “Accepted”.

Upon the reception of the update message (IE813: C_UPD_DAT), the former MSA destination application validates the structure of the message. Assuming that the validation passes successfully, the former MSA destination application sends a notification message (IE803: C_AAD_NOT) to the former Consignee to inform him that the whole consignment (in case of refusal) or the refused part of the consignment (in case of partial refusal) has changed destination. In case of refusal of delivery, the state of the e-AAD at the former MSA of Destination is updated from “Refused” to “Diverted”. In case of partial refusal of delivery, the state of the e-AAD at the former MSA of Destination is updated from “Partially Refused” to “Delivered”.

At the other side, the new MSA destination application receives and validates the structure of the e-AAD (IE801: C_AAD_VAL). Assuming that the validation passes successfully, the new MSA destination application sends the e-AAD (IE801: C_AAD_VAL) to the new Consignee to inform him that he is the Consignee of the consignment. Moreover, the new MSA destination application sets the state of the movement to “Accepted”.
The Consignor may repeat this change of MS of Destination satisfying the aforementioned preconditions until the reception of RoR from the new Consignee. The procedure of RoR is described in Chapter III.I.1.1.1.

[image: image27.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

NEW : System: MSA destination

application

NEW : System: MSA destination

application

NEW : Consignee NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

4: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

7: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

15: Send Msg(IE813: C_UPD_DAT)

18: Send Msg(IE801: C_AAD_VAL)

19: Send Msg(IE813: C_UPD_DAT)

22: Send Msg(IE813: C_UPD_DAT)

23: Send Msg(IE801: C_AAD_VAL)

24: Send Msg(IE803: C_AAD_NOT)

12: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

21: Validate Msg Structure()

20: Validate Msg Structure()

17: Validate Msg Content()

e-AAD state is:

A. 'Delivered' if previous state at

MSA destination application is

'Partially Refused'

B 'Diverted' if previous state at MSA

destination application is 'Refused'

Figure 19: TSD - Consignor changes the MS of destination after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

[image: image28.emf] : Consignor

 : System: MSA dispatch application : System: MSA destination application

 : Consignee

NEW : System: MSA destination application

NEW : Consignee

2: Validate Msg Structure()

3: Validate Msg Conten...

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

21: Validate Msg Structure()

20: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

22: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

19: Send Msg(IE813: C_UPD_DAT)

11: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

18: Send Msg(IE801: C_AAD_VAL)

7: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

24: Send Msg(IE803: C_AAD_NOT)

8: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

23: Send Msg(IE801: C_AAD_VAL)

Figure 20: CLD - Consignor changes the MS of destination after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”
III.I.1.3.1.2 Change only Consignee
Another option of the Consignor in case of refused or partially refused delivery (IE818: C_DEL_DAT) is to change the Consignee (hence, the Place of Delivery as well) without changing the MS of Destination.

In that case, the Consignor sends the draft update (IE813: C_UPD_DAT) for validation to the MSA dispatch application.

Assuming that the draft update is valid, the MSA dispatch application sends the update message (IE813: C_UPD_DAT) back to the Consignor as an acknowledgement.

In addition, the MSA dispatch application sends to the unchanged MSA of Destination an e-AAD (IE801: C_AAD_VAL) that includes the following information:

· The ARC of the update message (IE813: C_UPD_DAT)
;

· The updated destination details (new Consignee and Place of Delivery), as declared in the update message (IE813: C_UPD_DAT);

· In case of change of destination for a “Partially Refused” movement, the refused quantity declared by the former Consignee in the partially refused report of receipt. Otherwise, the quantity is the same as the one in the original e-AAD (IE801: C_AAD_VAL).

Moreover, the MSA dispatch application stops the TIM_CHS timer and updates the TIM_AAD timer based on the new expected end of the movement. Finally, the state of the e-AAD at the MSA of Dispatch is updated by the MSA dispatch application from “Refused” or “Partially Refused” to “Accepted”.

Upon the reception of the e-AAD (IE801: C_AAD_VAL), the MSA destination application checks and confirms that the ARC corresponds to a movement in the “Refused” or “Partially Refused” state. Following, the MSA destination application validates the structure of the received e-AAD (IE801: C_AAD_VAL). In addition, the MSA destination application checks whether the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) has already been received. Assuming that the message structure validation passes successfully and that the e-AAD (IE801: C_AAD_VAL) instance is unique (it contains a unique “(HEADER) E-AAD.Sequence Number”), the MSA destination application accepts and processes the message. The state of the e-AAD at the unchanged MSA of Destination is updated to from “Refused” or “Partially Refused” to “Accepted”.

Finally, the MSA destination application sends:

· A notification message (IE803: C_AAD_NOT) to the former Consignee to inform him that the whole consignment (in case of refusal) or the refused part of the consignment (in case of partial refusal) has changed destination;

· The e-AAD (IE801: C_AAD_VAL) to the new Consignee to notify him that he is the new Consignee of the whole consignment (in case of refusal by the former Consignee) or of the refused part of the consignment (in case of partial refusal by the former Consignee).

The Consignor may repeat this change of Consignee satisfying the aforementioned preconditions until the reception of RoR from the new Consignee. The procedure of RoR is described in Chapter III.I.1.1.1.

[image: image29.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

NEW : Consignee NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

18: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

19: Send Msg(IE801: C_AAD_VAL)

7: Send Msg(IE801: C_AAD_VAL)

21: Send Msg(IE803: C_AAD_NOT)

22: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

11: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

14: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

12: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

20: Validate Msg Content()

New Consignee and

new Place of Delivery

and updated quantity

(in case of partial

refusal)

Figure 21: TSD - Consignor changes the Consignee after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

[image: image30.emf] : Consignor

 : System: MSA dispatch application : System: MSA destination application

 : Consignee

NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801: C_AAD_VAL)

5: Send Msg(IE801: C_AAD_VAL)

6: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

12: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

13: Validate Msg Structure()

14: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

15: Send Msg(IE813: C_UPD_DAT)

16: Validate Msg Structure()

17: Validate Msg Content()

18: Send Msg(IE813: C_UPD_DAT)

19: Send Msg(IE801: C_AAD_VAL)

20: Validate Msg Content()

21: Send Msg(IE803: C_AAD_NOT)

22: Send Msg(IE801: C_AAD_VAL)

Figure 22: CLD - Consignor changes the Consignee after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

In the case that the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) with the same content has already been received, the MSA destination application ignores the duplicate instance.

In the exceptional case that the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) but with different content has already been received, the MSA destination application rejects the message via an IE906 reporting an out-of-sequence violation (Chapter III.I.2.1 Exception Handling in Common Domain).
III.I.1.3.1.3 Change only Place of Delivery

The Consignor may initiate the change of destination procedure to change the place of delivery of the consignment as a result of refusal or partial refusal of delivery through RoR (IE818: C_DEL_DAT).

In that case, the Consignor sends the draft update (IE813: C_UPD_DAT) containing the new place of delivery for validation to the MSA dispatch application. The update message is found valid and the MSA dispatch application submits the update message (IE813: C_UPD_DAT) to the MSA destination application and to the Consignor as acknowledgement.

Moreover, the MSA dispatch application stops the TIM_CHS timer and updates the TIM_AAD timer based on the new expected end of the movement. Finally, the state of the e-AAD at the MSA of dispatch is set by the MSA dispatch application to “Accepted”.

Upon the reception of the update message (IE813: C_UPD_DAT), the MSA destination application validates successfully the received update and sets the state of e-AAD at the MS of destination to “Accepted”. Finally, the MSA destination application forwards the update message (IE813: C_UPD_DAT) to the Consignee.

The Consignor may repeat this change of Place of Delivery satisfying the aforementioned preconditions until the reception of RoR from the Consignee. The procedure of RoR is described in Chapter III.I.1.1.1.

[image: image31.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

4: Send Msg(IE801: C_AAD_VAL)

7: Send Msg(IE801: C_AAD_VAL)

18: Send Msg(IE813: C_UPD_DAT)

19: Send Msg(IE813: C_UPD_DAT)

8: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

11: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

14: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

21: Send Msg(IE813: C_UPD_DAT)

12: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

20: Validate Msg Structure()

Figure 23: TSD - Consignor changes the Place of Delivery after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

[image: image32.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

20: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

19: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

18: Send Msg(IE813: C_UPD_DAT)

11: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

7: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refusal))

21: Send Msg(IE813: C_UPD_DAT)

8: Send Msg(IE818:C_DEL_DAT (Refusal or Partial Refus...

Figure 24: CLD - Consignor changes the Place of Delivery after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”
III.I.1.3.2 Reminder at expiry time for change of destination (UC2.17)

Chapter III.I.1.3.1 describes the change of destination process after the refusal or partial refusal of delivery by the Consignee. In some cases, the Consignor may not change the destination within the predefined time limits, which leads to the expiration of the TIM_CHS timer. In that case, the MSA dispatch application sends a reminder to the Consignor.

It is assumed that the Consignor has initiated an excise movement, which has been refused or partially refused by the Consignee (see Chapter III.I.1.1.1) and the Consignor has not sent an updated message (IE813: C_UPD_DAT) within the time limits (TIM_CHS timer expired). The e-AAD is flagged so that it can set the timer when expired. The implementation mechanism of the flag depends on the national system to be developed. Upon the expiration of TIM_CHS timer, the MSA dispatch application sends a reminder (IE802: C_EXC_REM) to the Consignor. This reminder will include the ARC of the movement that has been refused or partially refused, the identity of the declared Consignee and the limit date for the submission of the change of destination.

After the reception of this reminder, the Consignor initiates the change of destination process by selecting one of the options described in Chapter III.I.1.3.1.

[image: image33.emf] : Consignor : Consignor

 : System: MSA dispatch application : System: MSA dispatch application : System: MSA destination application : System: MSA destination application

 : Consignee : Consignee

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

4: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

7: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

15: Send Msg(IE802: C_EXC_REM)

{TIM_CHS timer

expired}

12: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

Figure 25: TSD - Reminder at expiry time for change of destination after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”

[image: image34.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801: C_AAD_VAL)

5: Send Msg(IE801: C_AAD_VAL)

6: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

12: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

13: Validate Msg Structure()

14: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

15: Send Msg(IE802: C_EXC_REM)

Figure 26: CLD - Reminder at expiry time for change of destination after the submission of e-AAD of which delivery has been “Refused” or “Partially Refused”
III.I.1.4 Other Valid Scenarios

III.I.1.4.1 Download of an e-AAD by a non-involved MSA (UC2.51)
This scenario shall be supported by a MSA in order to allow its MSA Officials to download from the MSA of Dispatch all records concerning a given e-AAD. In this scenario, it is assumed that the MSA dispatch application is different than the requesting MSA application and that all validations of the incoming messages pass successfully.

The e-AAD consultation is explicitly initiated by a MSA Official, who provides the ARC of the queried e-AAD accompanied by the last known sequence number for the specific ARC indicating also that he/she is interested in the movement history.

The Requesting MSA application builds and sends the query of the MSA Official to the MSA dispatch application (it is the MSA of which the Member State code appears in the third and fourth characters of the ARC) via the Status Request (IE904: C_STD_REQ) message, including the ARC and the last known sequence number for the specific ARC, the status of the movement and the last message received from the MSA of Dispatch. It is noted that in case that the requesting MSA has not received any IE that is related to the concerned ARC, then it has to set the status to “None” and the last message received from the MSA of Dispatch to “None”. Furthermore, the Requesting MSA application has to explicitly declare in the sending IE904: C_STD_REQ that it requests the full movement history. If the latter is not indicated then only the status of the movement will be returned back from the MSA of Dispatch.

The MSA dispatch application receives and validates successfully the Status Request (IE904: C_STD_REQ).

In the case that the e-AAD is found, the MSA dispatch application replies with a Status Response (IE905: C_STD_RSP) conveying the actual status of the movement (for example, “Delivered”), the last known sequence number for the specific ARC and the last message received from the MSA of Destination for the specific ARC (e.g. the IE818). Following the submission of the IE905, the MSA dispatch application also submits to the requesting MSA application the IE934: C_PAC_DAT message that includes all business messages comprising the movement history.

In the opposite case that no e-AAD is found, a Status Response (IE905: C_STD_RSP) with “Status = None” and last message set to “None” is sent back to the requesting MSA application. The ARC and the sequence number in the IE905 are the same as the ones included in the received IE904. This means either that the ARC is invalid or that the commonly agreed time for consultation of movement data has passed, and therefore the e-AAD has been archived and is no more available on line. Subsequently, no other business messages re-submission follows.

[image: image35.emf]Requesting : System: MSA application Requesting : System: MSA application : System: MSA dispatch application : System: MSA dispatch application

1: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber = Y && State=None && LastMsgRcv=None])

2: Validate Msg Structure()

3: Send Msg(IE905:C_STD_RSP [ARC=X && SequenceNumber = Z && State=xxx && LastMsgRcv=IExxx])

5: Send Msg(IE934:C_PAC_DAT)

6: Validate Msg Structure()

4: Validate Msg Structure()

Figure 27: TSD - e-AAD information downloaded successfully by a non-involved MSA

[image: image36.emf]Requesting : System: MSA application : System: MSA dispatch application

2: Validate Msg Structure() 6: Validate Msg Structure()

1: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber = Y

&& State=None && LastMsgRcv=None])

3: Send Msg(IE905:C_STD_RSP [ARC=X && SequenceNumber = Z

&& State=xxx && LastMsgRcv=IExxx])

5: Send Msg(IE934:C_PAC_DAT)

4: Validate Msg Structure()

Figure 28: CLD - e-AAD information downloaded successfully by a non-involved MSA

[image: image37.emf]Requesting : System: MSA application Requesting : System: MSA application : System: MSA dispatch application : System: MSA dispatch application

1: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber = Y && State=None && LastMsgRcv=None])

2: Validate Msg Structure()

3: Send Msg(IE905:C_STD_RSP [ARC=X && State=None && LastMsgRcv=None])

4: Validate Msg Structure()

Figure 29: TSD - Download of an e-AAD by a non-involved MSA failed

[image: image38.emf]Requesting : System: MSA application : System: MSA dispatch application

2: Validate Msg Structure() 4: Validate Msg Structure()

1: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber = Y &&

State=None && LastMsgRcv=None])

3: Send Msg(IE905:C_STD_RSP [ARC=X && State=None

&& LastMsgRcv=None])

Figure 30: CLD - Download of an e-AAD by a non-involved MSA failed

III.I.1.4.2 General query to retrieve an e-AAD (UC2.52)
This scenario describes the message exchange protocol between a MSA application and an initiator MSA application (which has initiated the e-AAD) when a MSA Official wants to retrieve an e-AAD, which has been initiated by a MSA application located in a different MSA from that of request.

The Requesting MSA application (e-AAD requestor) sends a query (IE701: C_REQ_SUB) to the supposed MSA initiator of the requested e-AAD.

Upon the reception of the e-AAD query (IE701: C_REQ_SUB), the Initiator MSA application validates successfully the received message and responds with either a list of e-AADs (IE821: C_LST_VAL) if one or more e-AADs are retrieved or a refusal message (IE702: C_REQ_REF) for the cases where no e-AAD matches the search criteria or the maximum limit of retrieved e-AADs has been reached.

[image: image39.wmf]National (Requestor) : System:

MSA application

National (Requestor) : System:

MSA application

Initiator : System: MSA

application

Initiator : System: MSA

application

1: Send Msg(IE701:C_REQ_SUB)

3: Send Msg(IE821: C_LST_VAL)

2: Validate Msg Structure()

4: Validate Msg Structure()

Figure 31: TSD - Successful retrieval of e-AAD(s)

[image: image40.wmf]National (Requestor) : System: MSA

application

Initiator : System: MSA application

2: Validate Msg Structure()

4: Validate Msg Structure()

1: Send Msg(IE701:C_REQ_SUB)

3: Send Msg(IE821: C_LST_VAL)

Figure 32: CLD - Successful retrieval of e-AAD(s)

[image: image41.wmf]National (Requestor) : System:

MSA application

National (Requestor) : System:

MSA application

Initiator : System: MSA

application

Initiator : System: MSA

application

1: Send Msg(IE701:C_REQ_SUB)

3: Send Msg(IE702: C_REQ_REF)

2: Validate Msg Structure()

4: Validate Msg Structure()

Figure 33: TSD - No movement found or limit exceeded

[image: image42.wmf]National (Requestor) : System: MSA

application

Initiator : System: MSA application

2: Validate Msg Structure()

4: Validate Msg Structure()

1: Send Msg(IE701:C_REQ_SUB)

3: Send Msg(IE702: C_REQ_REF)

Figure 34: CLD - No movement found or limit exceeded

III.I.1.5 Export Scenarios

This section aims to specify all possible message exchange protocols involved in the Export cases. The identification of these scenarios has been based on the “exportation of goods” use cases in FESS [A1], which define the exportation of excise goods moving under duty suspension arrangements outside the European Community by triggering:

· local clearance at export, where the Consignor submits both the e-AAD and the export declaration in his own premises; or
· export operation at office of export, where the Consignor submits only the e-AAD, whereas the export declaration is submitted at the office of export (possibly in a different Member State).

It shall be noted that:

· These scenarios assume the availability of ECS Phase 2, hence full automation of the Export cases. This is, however, a recommended implementation. The integration of EMCS and ECS and the implementation details remain a national matter (see also the SD [A2]);

· Any communication outside the scope of the EMCS application (such as, the information exchanged between the Consignor or forwarding agent and the Customs Export Application) is not in the interest of this document.

III.I.1.5.1 Local Clearance at Export

In the case of “Local Clearance at Export”, the Consignor submits both the e-AAD and the export declaration at his own premises. Hence, the Member State of export is always the Member State of dispatch. It shall be noted that:
· The actor MSA dispatch application in the Sequence Diagrams is the MSA dispatch/export application appearing in FESS [A1]. In this case there is no Consignee and the destination fields in the e-AAD are not applicable.
· For simplification reasons the Sequence Diagrams depict the submission and registration of only one draft e-AAD. However, it is possible that an export declaration includes more than one ARC. In this case, all “e-AAD” references should be read as “all concerned e-AADs”.

III.I.1.5.1.1 Local Clearance at Export followed by Export Confirmation of Exit (UC2.44)

In this scenario, all message validations pass successfully. The Anticipated Arrival Record (IE501: C_AER_SND) is cross-checked successfully against the e-AAD and the exit from the Community is confirmed.
III.I.1.5.1.1.1 Local Clearance at Export (2.44)
According to this scenario, the Consignor submits a draft e-AAD (IE815: N_AAD_SUB) to the MSA dispatch application including export as the destination type (Destination Type Code is “6 = Destination - Export”). The validation of the submitted draft e-AAD passes successfully and the MSA dispatch application returns the validated e-AAD (IE801: C_AAD_VAL) back to the Consignor. Finally, the state of the movement at the MSA of dispatch is set to “Accepted for export”.

Upon the reception of the validated e-AAD (IE801: C_AAD_VAL) from the MSA dispatch application, the Consignor submits the export declaration to the Customs Export Application (this communication is outside EMCS, hence it is not displayed in the relevant Sequence and Collaboration Diagrams).
When the export is released by the Customs Export Application, the Anticipated Export Record (IE501: C_AER_SND) is forwarded to the MSA dispatch application.
Upon the reception of the Anticipated Export Record (IE501: C_AER_SND) from the Customs Export Application, the MSA dispatch application cross-checks it against the e-AAD. The cross-checking is positive and the MSA dispatch application builds a notification message (IE829: C_EXP_NOT) and sends it back to the Consignor. Finally, the state of the movement at the MSA of dispatch is set to “Exporting” and the timer TIM_AAD is initiated to expire at the expected date of exit (date of dispatch + journey time).
The MSA dispatch application is waiting for the discharge to take place when the exit from the Community is completed.
III.I.1.5.1.1.2 Export Confirmation of Exit (2.46)
The MSA dispatch application receives the exit results from the Customs Export Application (IE518: C_EXT_RES). Assuming that the validation process passes successfully and the exit is accepted (IE518/Control Result Code: A1, A2, A4), the MSA dispatch application builds the Report of Receipt (IE818) reporting exit acceptance (IE818/Global conclusion of receipt: 21, 22) and forwards it to the Consignor. Moreover, the state of the movement at the MSA of dispatch is updated from “Exporting” to “Delivered”. Finally, if the TIM_AAD timer has not expired, the MSA dispatch application stops it, otherwise it resets the flag raised locally at its expiration.
The scenario with the acceptance of delivery is depicted in Figure 35 and Figure 36:
[image: image43.emf] : Consignor : Consignor

 : Customs Export Application : Customs Export Application

 : System: MSA dispatch application : System: MSA dispatch application

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg DTD()

7: e-AAD and export declaration cross-checking

e-AAD is in the

"Accepted for

export" state

8: Send Msg(IE829:C_EXP_NOT)

e-AAD is in the

"Exporting" state

10: Validate Msg DTD()

11: Send Msg(IE818:C_DEL_DAT[Acceptance])

e-AAD is in the

"Delivered" state

5: Send Msg(IE501: C_AER_SND)

9: Send Msg(IE518:C_EXT_RES)

Figure 35: TSD - Local Clearance at Export followed by Export Confirmation of Exit
[image: image44.wmf] : Consignor

 : System: MSA dispatch application

 : Customs Export Application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg DTD()

7: e-AAD and export declaration cross-checking

10: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

4: Send Msg(IE801:C_AAD_VAL)

8: Send Msg(IE829:C_EXP_NOT)

11: Send Msg(IE818:C_DEL_DAT[Acceptance])

5: Send Msg(IE501: C_AER_SND)

9: Send Msg(IE518:C_EXT_RES)

Figure 36: CLD - Local Clearance at Export followed by Export Confirmation of Exit
III.I.1.5.1.2 Local Clearance at Export followed by Export Cancellation of Exit

In this scenario, all message validations pass successfully. The Anticipated Arrival Record (IE501: C_AER_SND) is cross-checked successfully against the e-AAD but the exit is refused.
III.I.1.5.1.2.1 Local Clearance at Export (2.44)

The “Local Clearance at Export” is exactly the same as in Section III.I.1.5.1.1.1 Local Clearance at Export (2.44). Hence, the e-AAD is in the “Exporting” state, the TIM_AAD has been initiated and the MSA dispatch application is waiting for the discharge to take place when the exit from the Community is completed.

III.I.1.5.1.2.2 Export Cancellation of Exit (2.46)

The MSA dispatch application receives the exit results from the Customs Export Application (IE518: C_EXT_RES). Assuming that the validation process passes successfully and the exit is refused (IE518/Control Result Code: B1), the MSA dispatch application builds the Report of Receipt (IE818: C_DEL_DAT) reporting exit refusal (IE818/Global conclusion of receipt: 23) and forwards it to the Consignor. Moreover, the state of the movement at the MSA of dispatch is updated from “Exporting” to “Refused”. Finally, it starts the TIM_CHS timer waiting for the change of destination from the Consignor.

III.I.1.5.1.2.3 Change of Destination (UC2.05)

Upon receipt of the exit refusal (IE818/Global conclusion of receipt: 23), the Consignor issues a change of destination, as described in the scenario of Section III.I.1.3.1 Change of Destination (UC2.05).
The scenario with the refusal of delivery is depicted in Figure 37 and Figure 38:
[image: image45.emf] : Consignor : Consignor

 : Customs Export Application : Customs Export Application : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted for

export" state

e-AAD is in the

"Exporting" state

e-AAD is in the

"Refused" state

e-AAD in the

"Accepted" state

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE501: C_AER_SND)

9: Send Msg(IE518: C_EXT_RES)

12: Send Msg(IE813:C_UPD_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg DTD()

7: e-AAD and export declaration positive cross-checking

8: Send Msg(IE829:C_EXP_NOT)

10: Validate Msg DTD()

11: Send Msg(IE818:C_DEL_DAT[Refusal])

Figure 37: TSD - Local Clearance at Export followed by Export Cancellation of Exit

[image: image46.emf] : Consignor

 : Customs Export Application

 : System: MSA dispatch application

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE501: C_AER_SND)

6: Validate Msg DTD()

7: e-AAD and export declaration positive cross-checking

8: Send Msg(IE829:C_EXP_NOT)

9: Send Msg(IE518: C_EXT_RES)

10: Validate Msg DTD()

11: Send Msg(IE818:C_DEL_DAT[Refusal])

12: Send Msg(IE813:C_UPD_DAT)

Figure 38: CLD - Local Clearance at Export followed by Export Cancellation of Exit
III.I.1.5.1.3 Local Clearance at Export followed by negative cross-checking, export declaration cancellation and submission of new export declaration
In this scenario, the cross-checking between the Anticipated Arrival Record (IE501: C_AER_SND) and the e-AAD is negative. Following, the Consignor cancels the export declaration and submits a new one, which - provided that the movement is released by Customs - will be cross-checked with the existing “Accepted for Export” e-AAD.

III.I.1.5.1.3.1 Local Clearance at Export (2.44)

According to this scenario, the Consignor submits a draft e-AAD (IE815: N_AAD_SUB) to the MSA dispatch application including export as the destination type (Destination Type Code is “6 = Destination - Export”). The validation of the submitted draft e-AAD passes successfully and the MSA dispatch application returns the validated e-AAD (IE801: C_AAD_VAL) back to the Consignor. Finally, the state of the movement at the MSA of dispatch is set to “Accepted for export”.

Upon the reception of the validated e-AAD (IE801: C_AAD_VAL) from the MSA dispatch application, the Consignor submits the export declaration to the Customs Export Application (this communication is outside EMCS, hence it is not displayed in the relevant Sequence and Collaboration Diagrams). When the export is released by the Customs Export Application, the Anticipated Export Record (IE501: C_AER_SND) is forwarded to the MSA dispatch application.

Upon the reception of the Anticipated Export Record (IE501: C_AER_SND) from the Customs Export Application, the MSA dispatch application cross-checks it against the e-AAD.
When the cross-checking is negative, the MSA dispatch application builds a rejection message (IE839: C_CUS_REJ) that includes the list of errors found during the cross-checking of the IE501 with e-AAD and sends it back to the Consignor to inform him that the submitted e-AAD could not be exported. Finally, the state of the movement at the MSA of dispatch is retained to “Accepted for export”.

Upon reception of the rejection message (IE839: C_CUS_REJ) and the examination of the rejection results, the Consignor cancels the export declaration and submits a new one (this communication is outside EMCS, hence it is not displayed in the relevant Sequence and Collaboration Diagrams).
This scenario may be followed by:

· Release by Customs, positive cross-checking and export confirmation of exit (Section III.I.1.5.1.1 Local Clearance at Export followed by Export Confirmation of Exit (UC2.44));

· Release by Customs, positive cross-checking and export cancellation of exit (Section III.I.1.5.1.2 Local Clearance at Export followed by Export Cancellation of Exit);

· Release by Customs, negative cross-checking, export declaration cancellation and submission of new export declaration (Section III.I.1.5.1.3

 REF _Ref188112488 \h
Local Clearance at Export followed by negative cross-checking, export declaration cancellation and submission of new export declaration
· Release by Customs, negative cross-checking and e-AAD and export declaration cancellation (Section III.I.1.5.1.4 Local Clearance at Export followed by negative cross-checking and e-AAD and export declaration cancellation);

· No release by Customs (Section III.I.1.5.1.5 Local Clearance at Export and movement not released by Customs followed by e-AAD cancellation, Section III.I.1.5.1.6 Local Clearance at Export and movement not released by Customs followed by submission of new export declaration).
This scenario is depicted in Figure 39 and Figure 40:
[image: image47.emf] : Consignor : Consignor

 : Customs Export Application : Customs Export Application

 : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted for

export" state

e-AAD state is in

the "Accepted for

export" state

1: Send Msg(IE815:N_AAD_SUB)

5: Send Msg(IE501: C_AER_SND)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg DTD()

7: e-AAD and export declaration negative cross-checking

8: Send Msg(IE839:C_CUS_REJ)

9: Send Msg(IE810:C_CAN_DAT)

e-AAD is in the

"Cancelled" state

Figure 39: TSD - Local clearance at Export followed by negative cross-checking, export declaration cancellation and submission of new export declaration
[image: image48.emf] : Consignor

 : Customs Export Application

 : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg DTD()

7: e-AAD and export declaration negative cross-checking

1: Send Msg(IE815:N_AAD_SUB)

4: Send Msg(IE801:C_AAD_VAL)

8: Send Msg(IE839:C_CUS_REJ)

5: Send Msg(IE501: C_AER_SND)

Figure 40: CLD - Local clearance at Export followed by negative cross-checking, export declaration cancellation and submission of new export declaration

III.I.1.5.1.4 Local Clearance at Export followed by negative cross-checking and e-AAD and export declaration cancellation

In this scenario, the cross-checking between the Anticipated Arrival Record (IE501: C_AER_SND) and the e-AAD is negative. Following, the Consignor cancels the full export operation by cancelling both the export declaration as well as the e-AAD.

III.I.1.5.1.4.1 Local Clearance at Export (2.44)
In this scenario, the cross-checking between the Anticipated Arrival Record (IE501: C_AER_SND) and the e-AAD is negative, as described earlier in the scenario of Section III.I.1.5.1.3 Local Clearance at Export followed by negative cross-checking, export declaration cancellation and submission of new export declaration. Hence, the movement is in the “Accepted for export” state.
III.I.1.5.1.4.2 Cancellation of e-AAD (UC2.10)

Upon reception of the rejection message (IE839: C_CUS_REJ) the Consignor cancels both the e-AAD and the export declaration. The export declaration is cancelled through the respective message for the Customs application (this communication is outside EMCS, hence it is not displayed in the relevant Sequence and Collaboration Diagrams).
The e-AAD is cancelled through the IE810 message and the state of the movement at the MSA of Dispatch is updated from “Accepted for export” to “Cancelled” (see Section III.I.1.2.2 Cancellation of e-AAD (UC2.10)).
The scenario with the refusal of delivery is depicted in Figure 41 and Figure 42:
[image: image49.emf] : Consignor : Consignor

 : Customs Export Application : Customs Export Application

 : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted for

export" state

e-AAD state is in

the "Accepted for

export" state

1: Send Msg(IE815:N_AAD_SUB)

5: Send Msg(IE501: C_AER_SND)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg DTD()

7: e-AAD and export declaration negative cross-checking

8: Send Msg(IE839:C_CUS_REJ)

9: Send Msg(IE810:C_CAN_DAT)

e-AAD is in the

"Cancelled" state

Figure 41: TSD - Local clearance at Export followed by negative cross-checking and e-AAD and export declaration cancellation

[image: image50.emf] : Consignor

 : Customs Export Application

 : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg DTD()

7: e-AAD and export declaration negative cross-checking

1: Send Msg(IE815:N_AAD_SUB)

9: Send Msg(IE810:C_CAN_DAT)

4: Send Msg(IE801:C_AAD_VAL)

8: Send Msg(IE839:C_CUS_REJ)

5: Send Msg(IE501: C_AER_SND)

Figure 42: CLD - Local clearance at Export followed by negative cross-checking and e-AAD and export declaration cancellation
III.I.1.5.1.5 Local Clearance at Export and movement not released by Customs followed by e-AAD cancellation

In this scenario, the movement has not been released by Customs. Following, the Consignor cancels the e-AAD.
III.I.1.5.1.5.1 Local Clearance at Export (2.44)

According to this scenario, the Consignor submits a draft e-AAD (IE815: N_AAD_SUB) to the MSA dispatch application including export as the destination type (Destination Type Code is “6 = Destination - Export”). The validation of the submitted draft e-AAD passes successfully and the MSA dispatch application returns the validated e-AAD (IE801: C_AAD_VAL) back to the Consignor. Finally, the state of the movement at the MSA of dispatch is set to “Accepted for export”.

Upon the reception of the validated e-AAD (IE801: C_AAD_VAL) from the MSA dispatch application, the Consignor submits the export declaration to the Customs Export Application. However, the Consignor is informed by Customs that the movement could not be released (the communication between the Consignor and the Customs Export Application is outside EMCS, hence it is not displayed in the relevant Sequence and Collaboration Diagrams).

III.I.1.5.1.5.2 Cancellation of e-AAD (UC2.10)

Provided that the goods have not left the place of dispatch, the Consignor cancels the e-AAD through the IE810 message as described in Section III.I.1.2.2 Cancellation of e-AAD (UC2.10)). The state of the movement is updated from “Accepted for export” to “Cancelled”
This scenario is depicted in Figure 43 and Figure 44:
[image: image51.emf] : Consignor : Consignor

 : Customs Export Application : Customs Export Application

 : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted for

export" state

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

The movement is not released by Customs. The

Customs Application informs the Consignor for this

result. The Consignor cancels the e-AAD

5: Send Msg(IE810:C_CAN_DAT)

e-AAD is in the

"Cancelled" state

Figure 43: TSD - Local clearance at Export and movement not released by Customs followed by e-AAD cancellation
[image: image52.emf] : Consignor

 : Customs Export Application

 : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

1: Send Msg(IE815:N_AAD_SUB)

5: Send Msg(IE810:C_CAN_DAT)

4: Send Msg(IE801:C_AAD_VAL)

Figure 44: CLD - Local clearance at Export and movement not released by Customs followed by e-AAD cancellation

III.I.1.5.1.6 Local Clearance at Export and movement not released by Customs followed by submission of new export declaration

The movement has not been released by Customs, as described earlier in the scenario of Section III.I.1.5.1.5.1 Local Clearance at Export (2.44), and therefore the movement is in the “Accepted for Export” state. Following, the Consignor submits a new export declaration, which - provided that the movement is released by Customs - will be cross-checked with the existing “Accepted for Export” e-AAD.
This scenario may be followed by:

· Release by Customs, positive cross-checking and export confirmation of exit (Section III.I.1.5.1.1 Local Clearance at Export followed by Export Confirmation of Exit (UC2.44));

· Release by Customs, positive cross-checking and export cancellation of exit (Section III.I.1.5.1.2 Local Clearance at Export followed by Export Cancellation of Exit);

· Release by Customs, negative cross-checking, export declaration cancellation and submission of new export declaration (Section III.I.1.5.1.3 Local Clearance at Export followed by negative cross-checking, export declaration cancellation and submission of new export declaration);

· Release by Customs, negative cross-checking and e-AAD and export declaration cancellation (Section III.I.1.5.1.4 Local Clearance at Export followed by negative cross-checking and e-AAD and export declaration cancellation);

· No release by Customs (Section III.I.1.5.1.5 Local Clearance at Export and movement not released by Customs followed by e-AAD cancellation, Section III.I.1.5.1.5 Local Clearance at Export and movement not released by Customs followed by e-AAD cancellation).

This scenario is depicted in Figure 45 and Figure 46:
[image: image53.emf] : Consignor : Consignor

 : Customs Export Application : Customs Export Application

 : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted for

export" state

The movement is not released by Customs. The Customs

Application informs the Consignor for this result. The

Consignor may resubmit the export declaration until the

movement is released by Customs

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

Figure 45: TSD - Local Clearance at Export and movement not released by Customs followed by submission of new export declaration

[image: image54.emf] : Consignor

 : Customs Export Application

 : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

1: Send Msg(IE815:N_AAD_SUB)

4: Send Msg(IE801:C_AAD_VAL)

Figure 46: CLD - Local Clearance at Export and movement not released by Customs followed by submission of new export declaration

III.I.1.5.2 Export Operation at Office of Export when MSA of dispatch is MSA of export as well (2.43)
In the scenarios described in this section, the Consignor submits only the e-AAD, whereas the export declaration is submitted by the consignee at the office of export. In addition, the Member State of export is always the Member State of dispatch.
It shall be noted that:

· The actor MSA dispatch application in the Sequence Diagrams is the MSA dispatch/export application appearing in FESS [A1]. In this case the consignor and the consignee are in the premises of the same MS and the consignee will be read as forwarding agent.
· For simplification reasons the Sequence Diagrams depict the submission and registration of only one draft e-AAD. However, it is possible that an export declaration includes more than one ARC. In this case, all “e-AAD” references should be read as “all concerned e-AADs”.
III.I.1.5.2.1 Export Operation at Office of Export followed by Export confirmation of exit

In this scenario, all message validations pass successfully. The export declaration (IE815: N_AAD_SUB) is cross-checked successfully against the e-AAD, the movement is released by Customs (IE501: C_AER_SND) and the exit from the Community is confirmed.

III.I.1.5.2.1.1 Export Operation at office of export (2.43)

According to this scenario, the Consignor submits a draft e-AAD (IE815: N_AAD_SUB) to the MSA dispatch application including export as the destination type (Destination Type Code is “6 = Destination - Export”). The validation of the submitted draft e-AAD passes successfully and the MSA dispatch application returns the validated e-AAD (IE801: C_AAD_VAL) back to the Consignor. Finally, the state of the movement at the MSA of dispatch is set to “Accepted” and the TIM_AAD timer is initiated.

The forwarding agent submits the export declaration (IE515: E_EXP_DAT) to the Customs Export Application, which in turn forwards it to the MSA dispatch application (the communication between the forwarding agent and the Customs Export Application is outside EMCS, hence it is not displayed in the relevant Sequence and Collaboration Diagrams).

Upon receipt of the export declaration from the Customs Export Application (IE515: E_EXP_DAT), the MSA dispatch application unsuccessfully cross-checks the consistency of the e-AAD with the export declaration (IE515: E_EXP_DAT).
In addition, the MSA dispatch application receives the Anticipated Export Record (IE501: C_AER_SND) from the Customs Export Application. Following, the MSA dispatch application:

· Changes the status of the e-AAD to “Exporting”;

· Builds a notification message (IE829: C_EXP_NOT) and sends it to the Consignor, to the Consignee (forwarding agent) and to the Customs Export Application.
The MSA dispatch application is waiting for the discharge to take place when the exit from the Community is completed.

III.I.1.5.2.1.2 Export confirmation of Exit (2.46)

The MSA dispatch application receives the exit results from the Customs Export Application (IE518: C_EXT_RES). Assuming that the validation process passes successfully and the exit is accepted (IE518/Control Result Code: A1, A2, A4), the MSA dispatch application builds the Report of Receipt (IE818) reporting exit acceptance (IE818/Global conclusion of receipt: 21, 22) and forwards it to the Consignor. Moreover, the state of the movement at the MSA of dispatch is updated from “Exporting” to “Delivered”. Finally, if the TIM_AAD timer has not expired, the MSA dispatch application stops it, otherwise it resets the flag raised locally at its expiration.

The scenario with the acceptance of delivery is depicted in Figure 47 and Figure 48:
[image: image55.emf] : Consignor : Consignor : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted"

state

e-AAD is in the

"Exporting" state

e-AAD is in the

"Delivered" state

1: Send Msg(IE815:N_AAD_SUB)

8: Send Msg(IE501:C_AER_SND)

13: Send Msg(IE518:C_EXT_RES[Acceptance)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

9: Validate Msg DTD()

7: e-AAD and export declaration positive cross-checking

10: Send Msg(IE829:C_EXP_REJ)

14: Validate Msg DTD()

15: Send Msg(IE818:C_DEL_DAT[Acceptance])

5: Send Msg(IE515:E_EXP_DAT)

6: Validate Msg DTD()

11: Send Msg(IE829:C_EXP_REJ)

12: Send Msg(IE829_C_EXP_REJ)

Figure 47: TSD - Export Operation at Office of Export followed by Export confirmation of exit

[image: image56.emf] : Consignor

 : Customs Export Application

 : System: MSA dispatch application

 : Consignee (forwarding agent)

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg DTD()

7: e-AAD and export declaration positive cross-checking

9: Validate Msg DTD()

14: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

4: Send Msg(IE801:C_AAD_VAL)

10: Send Msg(IE829:C_EXP_REJ)

15: Send Msg(IE818:C_DEL_DAT[Acceptance])

5: Send Msg(IE515:E_EXP_DAT)

8: Send Msg(IE501:C_AER_SND)

13: Send Msg(IE518:C_EXT_RES[Acceptance)

12: Send Msg(IE829_C_EXP_REJ)

11: Send Msg(IE829:C_EXP_REJ)

Figure 48: CLD - Export Operation at Office of Export followed by Export confirmation of exit
III.I.1.5.2.2 Export Operation at Office of Export followed by Export Cancellation of exit

In this scenario, all message validations pass successfully. The export declaration (IE815: N_AAD_SUB) is cross-checked successfully against the e-AAD, the movement is released by Customs (IE501: C_AER_SND) but the exit is refused.
III.I.1.5.2.2.1 Export Operation at office of export (2.43)
The “Local Clearance at Export” is exactly the same as in Section III.I.1.5.2.1.1 Export Operation at office of export (2.43). Hence, the e-AAD is in the “Exporting” state and the MSA dispatch application is waiting for the discharge to take place when the exit is completed.

III.I.1.5.2.2.2 Export Cancellation of Exit (2.46)

The MSA dispatch application receives the exit results from the Customs Export Application (IE518: C_EXT_RES). Assuming that the validation process passes successfully and the exit is refused (IE518/Control Result Code: B1), the MSA dispatch application builds the Report of Receipt (IE818) reporting exit refusal (IE818/Global conclusion of receipt: 23) and forwards it to the Consignor. Moreover, the state of the movement at the MSA of dispatch is updated from “Exporting” to “Refused”. Finally, it starts the TIM_CHS timer waiting for the change of destination from the Consignor.
III.I.1.5.2.2.3 Change of Destination (UC2.05)

Upon receipt of the exit refusal (IE818/Global conclusion of receipt: 23), the Consignor issues a change of destination, as described in the scenario of Section III.I.1.3.1 Change of Destination (UC2.05).
This scenario is depicted in Figure 49 and Figure 50:
[image: image57.emf] : Consignor : Consignor : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted"

state

e-AAD is in the

"Exporting" state

e-AAD is in the

"Refused" state

1: Send Msg(IE815:N_AAD_SUB)

8: Send Msg(IE501:C_AER_SND)

13: Send Msg(IE518:C_EXT_RES)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

9: Validate Msg DTD()

7: e-AAD and export declaration cross-checking

10: Send Msg(IE829:C_EXP_NOT)

11: Send Msg(IE829:C_EXP_NOT)

14: Validate Msg DTD()

15: Send Msg(IE818:C_DEL_DAT[Refusal])

5: Send Msg(IE515:E_EXP_DAT)

6: Validate Msg DTD()

16: Send Msg(IE813: C_UPD_DAT)

e-AAD is in the

"Accepted" state

12: Send Msg(IE829:C_EXP_NOT)

Figure 49: TSD - Export Operation at Office of Export followed by Export cancellation of exit

[image: image58.emf] : Consignor

 : Consignee (forwarding agent)

 : Customs Export Application

 : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg DTD()

7: e-AAD and export declaration cross-checking

9: Validate Msg DTD()

14: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

16: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801:C_AAD_VAL)

10: Send Msg(IE829:C_EXP_NOT)

15: Send Msg(IE818:C_DEL_DAT[Refusal])

5: Send Msg(IE515:E_EXP_DAT)

8: Send Msg(IE501:C_AER_SND)

13: Send Msg(IE518:C_EXT_RES)

12: Send Msg(IE829:C_EXP_NOT)

11: Send Msg(IE829:C_EXP_NOT)

Figure 50: CLD - Export Operation at Office of Export followed by Export cancellation of exit

III.I.1.5.2.3 Export Operation at Office of Export followed by negative cross-checking before the export release and Change of Destination

In this scenario, all message validations pass successfully. However, the cross-checking of the export declaration (IE815: N_AAD_SUB) against the e-AAD is found to be negative before the movement is released by Customs.
III.I.1.5.2.3.1 Export Operation at office of export (2.43)
According to this scenario, the Consignor submits a draft e-AAD (IE815: N_AAD_SUB) to the MSA dispatch application including export as the destination type (Destination Type Code is “6 = Destination - Export”). The validation of the submitted draft e-AAD passes successfully and the MSA dispatch application returns the validated e-AAD (IE801: C_AAD_VAL) back to the Consignor. Finally, the state of the movement at the MSA of dispatch is set to “Accepted” and the TIM_AAD timer is initiated.
The forwarding agent submits the export declaration (IE515: E_EXP_DAT) to the Customs Export Application, which in turn forwards it to the MSA destination application (the communication between the forwarding agent and the Customs Export Application is outside EMCS, hence it is not displayed in the relevant Sequence and Collaboration Diagrams).

Upon receipt of the export declaration from the Customs Export Application (IE515: E_EXP_DAT), the MSA destination application cross-checks its consistency against the e-AAD.
When the cross-checking is negative, the MSA dispatch application builds a rejection message (IE839: C_CUS_REJ) that includes the list of errors found during the cross-checking of the IE515 with the e-AAD and sends it to the Consignor, to the forwarding agent as well as to the Customs Export Application.

Finally, the state of the movement at the MSA of dispatch is retained to “Accepted” and the TIM_CHS timer is started waiting for the change of destination from the Consignor.

III.I.1.5.2.3.2 Change of Destination (UC2.05)
Upon reception of the rejection message (IE839: C_CUS_REJ) and the examination of the rejection results, the Consignor performs a change of destination as described in Section III.I.1.2.1 Change of Destination (UC2.05).

This scenario is depicted in Figure 51 and Figure 52:
[image: image59.emf] : Consignor : Consignor : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted "

state

e-AAD remains in

the "Accepted"

state

e-AAD remains in

the "Accepted"

state

1: Send Msg(IE815:N_AAD_SUB)

8: Send Msg(IE501:C_AER_SND)

5: Send Msg(IE515:E_EXP_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_VAL_ADD)

6: Validate Msg DTD()

9: Validate Msg DTD()

7: e-AAD and export declaration negative cross-checking

10: Send Msg(IE839:C_CUS_REJ)

11: Send Msg(IE839:C_CUS_REJ)

13: Send Msg(IE813: C_UPD_DAT)

12: Send Msg(IE839:C_CUS_REJ)

Figure 51: TSD - Export Operation at Office of Export followed by negative cross-checking before the export release and Change of Destination

[image: image60.emf] : Consignor

 : Consignee (forwarding

agent)

 : Customs Export Application

 : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg DTD()

7: e-AAD and export declaration negative cross-checking

9: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

13: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801:C_VAL_ADD)

10: Send Msg(IE839:C_CUS_REJ)

5: Send Msg(IE515:E_EXP_DAT)

8: Send Msg(IE501:C_AER_SND)

12: Send Msg(IE839:C_CUS_REJ)

11: Send Msg(IE839:C_CUS_REJ)

Figure 52: CLD - Export Operation at Office of Export followed by negative cross-checking before the export release and Change of Destination

III.I.1.5.2.4 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of new export declaration
In this scenario, all message validations pass successfully. However, the cross-checking of the export declaration (IE815: N_AAD_SUB) against the e-AAD is found to be negative even though the movement has already been released by Customs. Following, the forwarding agent cancels the export declaration and submits a new one, which - provided that the movement is released by Customs - is cross-checked against the existing “Accepted” e-AAD.
III.I.1.5.2.4.1 Export Operation at office of export (2.43)
In this scenario, the cross-checking between the export declaration (IE515: E_EXP_DAT) and the e-AAD is found to be negative, as described earlier in the scenario of Section III.I.1.5.2.3.1 Export Operation at office of export (2.43). Hence, the movement is still in the “Accepted” state. However, the movement has already been released by Customs.

Upon reception of the rejection message (IE839: C_CUS_REJ) and the examination of the rejection results, the forwarding agent cancels the export declaration and submits a new one (this communication is outside EMCS, hence it is not displayed in the relevant Sequence and Collaboration Diagrams).

This scenario may be followed by:

· Positive cross-checking, release by Customs and export confirmation of exit (Section III.I.1.5.2.1 Export Operation at Office of Export followed by Export confirmation of exit);

· Positive cross-checking, release by Customs, and export cancellation of exit (Section III.I.1.5.2.2 Export Operation at Office of Export followed by Export Cancellation of exit);

· Negative cross-checking, export declaration cancellation and submission of new export declaration (Section III.I.1.5.2.3 Export Operation at Office of Export followed by negative cross-checking before the export release and Change of Destination, Section III.I.1.5.2.4 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of new export declaration, Section III.I.1.5.2.5 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of change of destination);

· No release by Customs (Section III.I.1.5.2.6 Export Operation at Office of Export and movement not released by Customs followed by new export declaration, Section III.I.1.5.2.7 Export Operation at Office of Export and movement not released by Customs followed by change of destination).
This scenario is depicted in Figure 53 and Figure 54:
[image: image61.emf] : Consignor : Consignor : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted"

state

e-AAD remains in

the "Accepted"

state

The forwarding agent cancels

the export declaration on behalf

of the consignor. Following, the

the forwarding agent submits a

new export declaration

1: Send Msg(IE815:N_AAD_SUB)

8: Send Msg(IE501:C_AER_SND)

5: Send Msg(IE515:E_EXP_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_VAL_ADD)

6: Validate Msg DTD()

9: Validate Msg DTD()

7: e-AAD and export declaration negative cross-checking

10: Send Msg(IE839:C_CUS_REJ)

11: Send Msg(IE839:C_CUS_REJ)

12: Send Msg(IE839:C_CUS_REJ)

Figure 53: TSD - Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of new export declaration

[image: image62.emf] : Consignor

 : Consignee (forwarding

agent)

 : Customs Export Application : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg DTD()

7: e-AAD and export declaration negative cross-checking

9: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

4: Send Msg(IE801:C_VAL_ADD)

10: Send Msg(IE839:C_CUS_REJ)

5: Send Msg(IE515:E_EXP_DAT)

8: Send Msg(IE501:C_AER_SND)

12: Send Msg(IE839:C_CUS_REJ)

11: Send Msg(IE839:C_CUS_REJ)

Figure 54: CLD - Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of new export declaration

III.I.1.5.2.5 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of change of destination

In this scenario, all message validations pass successfully. However, the cross-checking of the export declaration (IE815: N_AAD_SUB) against the e-AAD is found to be negative even though the movement has already been released by Customs. Following, the forwarding agent cancels the export declaration and issues a change of destination for the “Accepted” e-AAD.

III.I.1.5.2.5.1 Export Operation at office of export (2.43)
In this scenario, the cross-checking between the export declaration (IE515: E_EXP_DAT) and the e-AAD is found to be negative, as described earlier in the scenario of Section III.I.1.5.2.3.1 Export Operation at office of export (2.43). Hence, the movement is still in the “Accepted” state. However, the movement has already been released by Customs.

Upon reception of the rejection message (IE839: C_CUS_REJ) and the examination of the rejection results, the forwarding agent cancels the export declaration (this communication is outside EMCS, hence it is not displayed in the relevant Sequence and Collaboration Diagrams).
III.I.1.5.2.5.2 Change of Destination (UC2.05)

Upon reception of the rejection message (IE839: C_CUS_REJ) and the examination of the rejection results, the Consignor performs a change of destination as described in Section III.I.1.2.1 Change of Destination (UC2.05).

This scenario is depicted in Figure 55 and Figure 56:
[image: image63.emf] : Consignor : Consignor : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted"

state

e-AAD remains in

the "Accepted"

state

1: Send Msg(IE815:N_AAD_SUB)

5: Send Msg(IE515:E_EXP_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg DTD()

7: Validate Msg DTD()

8: e-AAD and export declaration negative cross-checking

9: Send Msg(IE839:C_CUS_REJ)

10: Send Msg(IE839:C_CUS_REJ)

12: Send Msg(IE813: C_UPD_DAT)

11: Send Msg(IE839:C_CUS_REJ)

e-AAD remains in

the "Accepted"

state

Figure 55: TSD - Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of change of destination

[image: image64.emf] : Consignor

 : Consignee (forwarding

agent)

 : Customs Export Application : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg DTD()

7: Validate Msg DTD()

8: e-AAD and export declaration negative cross-checking

5: Send Msg(IE515:E_EXP_DAT)

11: Send Msg(IE839:C_CUS_REJ)

10: Send Msg(IE839:C_CUS_REJ)

1: Send Msg(IE815:N_AAD_SUB)

12: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801:C_AAD_VAL)

9: Send Msg(IE839:C_CUS_REJ)

Figure 56: CLD - Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of change of destination

III.I.1.5.2.6 Export Operation at Office of Export and movement not released by Customs followed by new export declaration
In this scenario, the movement has not been released by Customs, and therefore the e-AAD has been maintained in the “Accepted” state. Following, the forwarding agent submits a new export declaration.

This scenario may be followed by:

· Positive cross-checking, release by Customs and export confirmation of exit (Section III.I.1.5.2.1 Export Operation at Office of Export followed by Export confirmation of exit);

· Positive cross-checking, release by Customs, and export cancellation of exit (Section III.I.1.5.2.2 Export Operation at Office of Export followed by Export Cancellation of exit);

· Negative cross-checking, export declaration cancellation and submission of new export declaration (Section III.I.1.5.2.3 Export Operation at Office of Export followed by negative cross-checking before the export release and Change of Destination, Section III.I.1.5.2.4 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of new export declaration, Section III.I.1.5.2.5 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of change of destination);

· No release by Customs (Section III.I.1.5.2.6 Export Operation at Office of Export and movement not released by Customs followed by new export declaration, Section III.I.1.5.2.7 Export Operation at Office of Export and movement not released by Customs followed by change of destination).

This scenario is depicted in Figure 57 and Figure 58:
[image: image65.wmf] : Consignor

 : Consignor

 : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application

 : Customs Export Application

 : System: MSA dispatch application

 : System: MSA dispatch application

e-AAD is in the

"Accepted"

state

5: Send Msg(IE515:E_EXP_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg DTD()

The exportation has been rejected by Customs. The

Customs Application informs the forwarding agent for

this result

The consignee may

submit new export

declaration until it is

accepted by Customs

1: Send Msg(IE815:N_AAD_SUB)

Figure 57: TSD - Export Operation at Office of Export and movement not released by Customs followed by new export declaration

[image: image66.emf] : Consignor

 : Consignee (forwarding agent)

 : Customs Export Application

 : System: MSA dispatch application

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE515:E_EXP_DAT)

6: Validate Msg DTD()

Figure 58: CLD - Export Operation at Office of Export and movement not released by Customs followed by new export declaration
III.I.1.5.2.7 Export Operation at Office of Export and movement not released by Customs followed by change of destination

In this scenario, the movement has not been released by Customs, and therefore the e-AAD has been maintained in the “Accepted” state. Following, the Consignor issues a change of destination.

This scenario is depicted in Figure 59 and Figure 60:
[image: image67.emf] : Consignor : Consignor : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA dispatch application : System: MSA dispatch application

e-AAD is in the

"Accepted"

state

The movement has not been released by Customs.

The Customs Application informs the forwarding agent

for this result

1: Send Msg(IE815:N_AAD_SUB)

5: Send Msg(IE515:E_EXP_DAT)

7: Send Msg(IE813: C_UPD_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg DTD()

e-AAD is in the

"Accepted"

state

Figure 59: TSD - Export Operation at Office of Export and movement not released by Customs followed by change of destination
[image: image68.emf] : Consignor

 : Consignee (forwarding agent)

 : Customs Export Application

 : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

7: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE515:E_EXP_DAT)

Figure 60: CLD - Export Operation at Office of Export and movement not released by Customs followed by change of destination
III.I.1.5.3 Export Operation at Office of Export when MSA of dispatch is different from MSA of export (2.43)

Just like in Section III.I.1.5.2 Export Operation at Office of Export when MSA of dispatch is MSA of export as well (2.43), in the scenarios described in this section, the Consignor submits only the e-AAD, whereas the export declaration is submitted by the consignee at the office of export. The only difference is that the Member State of export is different than Member State of dispatch.

It shall be noted that:

· The actor MSA destination application in the Sequence Diagrams is the MSA export application appearing in FESS [A1]; In this case the consignor and the consignee are in the premises of the same MS and the consignee will be read as forwarding agent.

· For simplification reasons the Sequence Diagrams depict the submission and registration of only one draft e-AAD. However, it is possible that an export declaration includes more than one ARC. In this case, all “e-AAD” references should be read as “all concerned e-AADs”.

III.I.1.5.3.1 Export Operation at Office of Export followed by Export Confirmation of Exit (UC2.43)

In this scenario, all validations pass successfully. The export declaration (IE815: N_AAD_SUB) is cross-checked successfully against the e-AAD, the movement is released by Customs (IE501: C_AER_SND) and the exit is confirmed.

III.I.1.5.3.1.1 Export Operation at office of export (2.43)

According to this scenario, the Consignor submits a draft e-AAD (IE815: N_AAD_SUB) to the MSA dispatch application including export as the destination type (Destination Type Code is “6 = Destination - Export”). Upon successful validation of the draft e-AAD, the MSA dispatch application returns the validated e-AAD (IE801: C_AAD_VAL) back to the Consignor and also disseminates it to the MSA destination application. Finally, the state of the movement at the MSA of dispatch is set to “Accepted” and the TIM_AAD timer is initiated.

Upon the reception of the validated e-AAD (IE801: C_AAD_VAL) from the MSA dispatch application, the MSA destination application stores the e-AAD and sets the state of the e-AAD at MSA of Destination to “Accepted”. Finally, the MSA destination application forwards the e-AAD (IE801: C_AAD_VAL) to the forwarding agent.

The forwarding agent submits the export declaration (IE515: E_EXP_DAT) to the Customs Export Application, which in turn forwards it to the MSA destination application. Upon receipt of the export declaration from the Customs Export Application (IE515: E_EXP_DAT), the MSA destination application cross-checks successfully the consistency of the e-AAD with the export declaration (IE515: E_EXP_DAT).

In addition, the MSA destination application receives the Anticipated Export Record (IE501: C_AER_SND) from the Customs Export Application. Following, the MSA dispatch application:

· Changes the status of the e-AAD to “Exporting”;

· Builds a notification message (IE829: C_EXP_NOT) and sends it to the forwarding agent, to the Customs Export Application and to the MSA dispatch application.

Upon receipt of the notification message (IE829: C_EXP_NOT), the MSA dispatch application performs the following actions:

· Changes the status of the e-AAD to “Exporting”;

· Sends the notification message (IE829: C_EXP_NOT) to the Consignor.

The MSA dispatch application and the MSA destination application are waiting for the discharge to take place when the exit from the Community is completed.

III.I.1.5.3.1.2 Export confirmation of Exit (2.46)

The MSA destination application receives the exit results from the Customs Export Application (IE518: C_EXT_RES). Assuming that the validation process passes successfully and the exit is accepted (IE518/Control Result Code: A1, A2, A4), the MSA destination application builds the Report of Receipt (IE818) reporting exit acceptance (IE818/Global conclusion of receipt: 21, 22) and forwards it to the MSA dispatch application. Moreover, the state of the movement at the MSA of destination is updated from “Exporting” to “Delivered”.

Upon the reception of the delivery notification message (IE818/Global conclusion of receipt: 21, 22, 23), the MSA dispatch application validates it successfully and changes the state of the e-AAD from “Exporting” to “Delivered”. Moreover, if the TIM_AAD timer has not expired, the MSA dispatch application stops it otherwise it resets the flag raised locally at its expiration. In addition, the MSA dispatch application forwards the delivery notification (IE818: C_DEL_DAT) to the Consignor.

This scenario is depicted in Figure 61 and Figure 62:
[image: image69.wmf] : Consignor

 : Consignor

 : System: MSA dispatch application

 : System: MSA dispatch application

 : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application

 : Customs Export Application

 : System: MSA destination application

 : System: MSA destination application

e-AAD is in the

"Accepted"

state

e-AAD is in the

"Exporting" state

e-AAD is in the

"Delivered" state

e-AAD is in the

"Accepted"

state

8: Send Msg(IE515:E_EXP_DAT)

11: Send Msg(IE501:C_AER_SND)

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg Structure ()

9: Validate Msg DTD()

10: e-AAD and export declaration cross checking

12: Validate Msg DTD()

13: Send Msg(IE829:C_EXP_NOT)

15: Send Msg(IE829:C_EXP_NOT)

e-AAD is in the

"Exporting" state

16: Validate Msg Structure()

17: Send Msg(IE518:C_EXT_RES)

19: Validate Msg DTD()

20: Send Msg(IE818:C_DEL_DAT)

e-AAD is in the

"Delivered" state

21: Validate Msg Structure()

22: Send Msg(IE818:C_DEL_DAT)

18: Send Msg(IE829:C_EXP_NOT)

14: Send Msg(IE829:C_EXP_NOT)

7: Send Msg(IE801:C_AAD_VAL)

Figure 61: TSD - Export Operation at Office of Export followed by Export confirmation of exit

[image: image70.wmf] : Consignor

 : Consignee (forwarding agent)

 : Customs Export Application

 : System: MSA destination application

 : System: MSA dispatch application

2: Validate Msg Structure()

3: Validate Msg Content()

16: Validate Msg Structure()

21: Validate Msg Structure()

6: Validate Msg Structure ()

9: Validate Msg DTD()

10: e-AAD and export declaration cross checking

12: Validate Msg DTD()

19: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

4: Send Msg(IE801:C_AAD_VAL)

18: Send Msg(IE829:C_EXP_NOT)

22: Send Msg(IE818:C_DEL_DAT)

8: Send Msg(IE515:E_EXP_DAT)

11: Send Msg(IE501:C_AER_SND)

17: Send Msg(IE518:C_EXT_RES)

14: Send Msg(IE829:C_EXP_NOT)

7: Send Msg(IE801:C_AAD_VAL)

13: Send Msg(IE829:C_EXP_NOT)

5: Send Msg(IE801:C_AAD_VAL)

15: Send Msg(IE829:C_EXP_NOT)

20: Send Msg(IE818:C_DEL_DAT)

Figure 62: CLD - Export Operation at Office of Export followed by Export confirmation of exit

III.I.1.5.3.2 Export Operation at Office of Export followed by Export Cancellation of exit

In this scenario, all validations pass successfully. The export declaration (IE815: N_AAD_SUB) is cross-checked successfully against the e-AAD, the movement is released by Customs (IE501: C_AER_SND) but the exit is refused.

III.I.1.5.3.2.1 Export Operation at office of export (2.43)

This Section is exactly the same as Section III.I.1.5.3.1.1. Hence, the e-AAD is in the “Exporting” state and the MSA dispatch application is waiting for the discharge to take place when the exit is completed.

III.I.1.5.3.2.2 Export Cancellation of Exit (2.46)

The MSA destination application receives the exit results from the Customs Export Application (IE518: C_EXT_RES). Assuming that the validation process passes successfully and the exit is refused (IE518/Control Result Code: B1), the MSA destination application builds the Report of Receipt (IE818) reporting exit refusal (IE818/Global conclusion of receipt: 23) and forwards it to MSA dispatch application. Moreover, the state of the movement at the MSA of dispatch is updated from “Exporting” to “Refused”.

Upon the reception of the delivery notification message (IE818/Global conclusion of receipt: 21, 22), the MSA dispatch application validates it successfully and changes the state of the e-AAD from “Exporting” to “Delivered”. Moreover, if the TIM_AAD timer has not expired, the MSA dispatch application stops it otherwise it resets the flag raised locally at its expiration. In addition, the MSA dispatch application forwards the delivery notification (IE818: C_DEL_DAT) to the Consignor.

Finally, it starts the TIM_CHS timer waiting for the change of destination from the Consignor as described in Section III.I.1.2.1 Change of Destination (UC2.05).

This scenario is depicted in Figure 63 and Figure 64:
[image: image71.wmf] : Consignor

 : Consignor

 : System: MSA dispatch application

 : System: MSA dispatch application

 : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application

 : Customs Export Application

 : System: MSA destination application

 : System: MSA destination application

e-AAD is in the

"Accepted"

state

e-AAD is in the

"Exporting" state

e-AAD is in the

"Refused" state

e-AAD is in the

"Accepted"

state

e-AAD is in the

"Exporting" state

e-AAD is in the

"Refused" state

8: Send Msg(IE515:E_EXP_DAT)

11: Send Msg(IE501:C_AER_SND)

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg Structure ()

9: Validate Msg DTD()

10: e-AAD and export declaration cross checking

12: Validate Msg DTD()

13: Send Msg(IE829:C_EXP_NOT)

15: Send Msg(IE829:C_EXP_NOT)

16: Validate Msg Structure()

17: Send Msg(IE518:C_EXT_RES[Refusal])

19: Validate Msg DTD()

20: Send Msg(IE818:C_DEL_DAT[Refusal])

21: Validate Msg Structure()

22: Send Msg(IE818:C_DEL_DAT[Refusal])

23: Send Msg(IE813: C_UPD_DAT)

18: Send Msg(IE829:C_EXP_NOT)

The consignee may submit change of

Destination.The sequence of actions

appear in the relevant sequence

diagram where Change of Destination

happens when prior e-AAD state is

exporting.

14: Send Msg(IE829:C_EXP_NOT)

7: Send Msg(IE801:C_AAD_VAL)

Figure 63: TSD - Export Operation at Office of Export followed by Export cancellation of exit

[image: image72.wmf] : Consignor

 : System: MSA dispatch application

 : Consignee (forwarding agent)

 : Customs Export Application

 : System: MSA destination application

2: Validate Msg Structure()

3: Validate Msg Content()

16: Validate Msg Structure()

21: Validate Msg Structure()

6: Validate Msg Structure ()

9: Validate Msg DTD()

10: e-AAD and export declaration cross checking

12: Validate Msg DTD()

19: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

23: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801:C_AAD_VAL)

18: Send Msg(IE829:C_EXP_NOT)

22: Send Msg(IE818:C_DEL_DAT[Refusal])

5: Send Msg(IE801:C_AAD_VAL)

15: Send Msg(IE829:C_EXP_NOT)

20: Send Msg(IE818:C_DEL_DAT[Refusal])

8: Send Msg(IE515:E_EXP_DAT)

11: Send Msg(IE501:C_AER_SND)

17: Send Msg(IE518:C_EXT_RES[Refusal])

14: Send Msg(IE829:C_EXP_NOT)

7: Send Msg(IE801:C_AAD_VAL)

13: Send Msg(IE829:C_EXP_NOT)

Figure 64: CLD - Export Operation at Office of Export followed by Export cancellation of exit

III.I.1.5.3.3 Export Operation at Office of Export followed by cross-checking failure before the export release and Change of Destination

In this scenario the e-AAD is validated properly by the MSA dispatch application and the export declaration is forwarded to the MSA destination application but the crosschecking fails before the export would probably be released by the Customs Export Application.

III.I.1.5.3.3.1 Export Operation at office of export (2.43)

According to this scenario, the Consignor submits a draft e-AAD (IE815: N_AAD_SUB) to the MSA dispatch application including export as the destination type (Destination Type Code is “6 = Destination - Export”). The validation of the submitted draft e-AAD passes successfully and the MSA dispatch application returns the validated e-AAD (IE801: C_AAD_VAL) back to the Consignor and the MSA destination application. Finally, the state of the movement at the MSA of dispatch is set to “Accepted” and the TIM_AAD timer is initiated.

Upon the reception of the validated e-AAD (IE801: C_AAD_VAL) from the MSA dispatch application, the MSA destination application stores the e-AAD and sets the state of the e-AAD at MSA of Destination to “Accepted”. Finally, the MSA destination application forwards the e-AAD (IE801: C_AAD_VAL) to the forwarding agent.

The forwarding agent submits the export declaration (IE515: E_EXP_DAT) to the Customs Export Application, which in turn forwards it to the MSA destination application. Upon receipt of the export declaration from the Customs Export Application (IE515: E_EXP_DAT), the MSA destination application cross-checks the consistency of the e-AAD(s) with the export declaration (IE515: E_EXP_DAT).

When the cross-checking is negative, the MSA destination application builds a rejection message (IE839: C_CUS_REJ) that includes the list of errors found during the cross-checking of the IE515 with the e-AAD and sends it to the Consignor, to the Consignee (forwarding agent) as well as to the Customs Export Application.

Finally, the state of the movement at the MSA of destination and dispatch is retained to “Accepted” and the TIM_CHS timer is started at dispatch waiting for the change of destination from the Consignor.

III.I.1.5.3.3.2 Change of Destination (UC2.05)

Upon reception of the rejection message (IE839: C_CUS_REJ) and the examination of the rejection results, the Consignor performs a change of destination as described in Section III.I.1.2.1 Change of Destination (UC2.05).

This scenario is depicted in Figure 65 and Figure 66:
[image: image73.emf] : Consignor : Consignor

 : System: MSA dispatch application : System: MSA dispatch application

 : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA destination application : System: MSA destination application

e-AAD is in the

"Accepted"

state

e-AAD is in the

"Accepted"

state

e-AAD remains

the "Accepted"

state

1: Send Msg(IE815:C_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE801:C_AAD-VAL)

6: Validate Msg Structure ()

8: Send Msg(IE515:E_EXP_DAT)

9: Validate Msg DTD()

10: e-AAD and export declaration cross checking

11: Send Msg(IE839:C_CUS_REF)

13: Send Msg(IE839:C_CUS_REJ)

16: Send Msg(IE813: C_UPD_DAT)

15: Send Msg(IE839:C_CUS_REJ)

14: Validate Msg Structure()

e-AAD remains the

"Accepted" state

The consignee may submit

change of Destination.The

sequence of actions

appear in the relevant

sequence diagram where

Change of Destination

happens and when prior

e-AAD state is "Accepted".

12: Send Msg(IE839:C_CUS_REJ)

7: Send Msg(IE801:C_AAD_VAL)

Figure 65: TSD - Export Operation at Office of Export followed by cross-checking failure before the export release and Change of Destination

[image: image74.emf] : Consignor

 : System: MSA dispatch application

 : Consignee (forwarding

agent)

 : Customs Export Application

 : System: MSA destination application

2: Validate Msg Structure()

3: Validate Msg Content()

14: Validate Msg Structure()

6: Validate Msg Structure ()

9: Validate Msg DTD()

10: e-AAD and export declaration cross checking

1: Send Msg(IE815:C_AAD_SUB)

16: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801:C_AAD_VAL)

15: Send Msg(IE839:C_CUS_REJ)

5: Send Msg(IE801:C_AAD-VAL)

13: Send Msg(IE839:C_CUS_REJ)

8: Send Msg(IE515:E_EXP_DAT)

12: Send Msg(IE839:C_CUS_REJ)

7: Send Msg(IE801:C_AAD_VAL)

11: Send Msg(IE839:C_CUS_REF)

Figure 66: CLD - Export Operation at Office of Export followed by cross-checking failure before the export release and Change of Destination
III.I.1.5.3.4 Export Operation at Office of Export followed by cross-checking failure after the export release, export declaration cancellation and submission of new export declaration

In this scenario the e-AAD is validated properly by the MSA dispatch application and the export declaration is forwarded to the MSA destination application. However, the cross-checking fails even though the movement has already been released by Customs. Following, the forwarding agent cancels the export declaration and submits a new one, which - provided that the movement is released by Customs - is cross-checked against the existing “Accepted” e-AADs.

III.I.1.5.3.4.1 Export Operation at office of export (2.43)

In this scenario, the cross-checking between the export declaration (IE515: E_EXP_DAT) and the e-AAD has failed as described earlier in the scenario of Section III.I.1.5.2.4.1 Export Operation at office of export (2.43). Hence, the movement is in the “Accepted” state. The only difference is that the movement has already been released by Customs.

Upon reception of the rejection message (IE839: C_CUS_REJ) and the examination of the rejection results, the forwarding agent cancels the export declaration and submits a new one (through the appropriate ECS messages).

This scenario may be followed by:

· Positive cross-checking, release by Customs and export confirmation of exit (Section III.I.1.5.2.1 Export Operation at Office of Export followed by Export confirmation of exit);

· Positive cross-checking, release by Customs, and export cancellation of exit (Section III.I.1.5.2.2 Export Operation at Office of Export followed by Export Cancellation of exit);

· Negative cross-checking, export declaration cancellation and submission of new export declaration (Section III.I.1.5.2.3 Export Operation at Office of Export followed by negative cross-checking before the export release and Change of Destination, Section III.I.1.5.2.4 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of new export declaration, Section III.I.1.5.2.5 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of change of destination);

· No release by Customs (Section III.I.1.5.2.6 Export Operation at Office of Export and movement not released by Customs followed by new export declaration, Section III.I.1.5.2.7 Export Operation at Office of Export and movement not released by Customs followed by change of destination).

This scenario is depicted in Figure 67 and Figure 68:
[image: image75.emf] : Consignor : Consignor

 : System: MSA dispatch application : System: MSA dispatch application

 : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA destination application : System: MSA destination application

e-AAD is in the

"Accepted"

state

e-AAD remains in

the "accepted"

state

e-AAD is in the

"Accepted"

state

e-AAD remains in

the "accepted"

state

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

16: Validate Msg Structure()

8: Send Msg(IE515:E_EXP_DAT)

10: Send Msg(IE501:C_AER_SND)

5: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg Structure ()

9: Validate Msg DTD()

12: e-AAD and export declaration cross checking

11: Validate Msg DTD()

13: Send Msg(IE839:C_CUS_REJ)

14: Send Msg(IE839:C_CUS_REJ)

17: Send Msg(IE839:C_CUS_REJ)

The consignee may submit a

new export declaration on

behalf of the consignor upon

an exportation is finally

released by Customs

The consignee must cancel the

export declaration on behalf of

the consignor since the export

has been released by Customs

before cross checking

15: Send Msg(IE839:C_CUS_REJ)

7: Send Msg(IE801:C_AAD_VAL)

Figure 67: TSD - Export Operation at Office of Export followed by cross-checking failure after the export release followed by Export declaration cancellation and resubmission of new export declaration

[image: image76.emf] : Consignor

 : System: MSA dispatch application

 : Consignee (forwarding

agent)

 : Customs Export Application : System: MSA destination application

2: Validate Msg Structure()

3: Validate Msg Content()

16: Validate Msg Structure()

6: Validate Msg Structure ()

9: Validate Msg DTD()

11: Validate Msg DTD()

12: e-AAD and export declaration cross checking

1: Send Msg(IE815:N_AAD_SUB)

4: Send Msg(IE801:C_AAD_VAL)

17: Send Msg(IE839:C_CUS_REJ)

5: Send Msg(IE801:C_AAD_VAL)

14: Send Msg(IE839:C_CUS_REJ)

8: Send Msg(IE515:E_EXP_DAT)

10: Send Msg(IE501:C_AER_SND)

15: Send Msg(IE839:C_CUS_REJ)

7: Send Msg(IE801:C_AAD_VAL)

13: Send Msg(IE839:C_CUS_REJ)

Figure 68: CLD - Export Operation at Office of Export followed by cross-checking failure after the export release followed by Export declaration cancellation and resubmission of new export declaration
III.I.1.5.3.5 Export Operation at Office of Export followed by cross-checking failure after the export release, export declaration cancellation and submission of change of destination

In this scenario, the e-AAD is validated properly by the MSA dispatch application and the export declaration is forwarded to the MSA destination application and to the consignor. However, the cross-checking fails even though the movement has already been released by Customs. Following, the forwarding agent cancels the export declaration, while the Consignor issues a change of destination for the “Accepted” e-AAD.

III.I.1.5.3.5.1 Export Operation at office of export (2.43)

In this scenario, the cross-checking between the export declaration (IE515: E_EXP_DAT) and the e-AAD has failed as described earlier in the scenario of Section III.I.1.5.2.4.1 Export Operation at office of export (2.43). Hence, the movement is in the “Accepted” state. The only difference is that the movement has already been released by Customs.

Upon reception of the rejection message (IE839: C_CUS_REJ) and the examination of the rejection results, the forwarding agent cancels the export declaration.

III.I.1.5.3.5.2 Change of Destination (UC2.05)

Upon reception of the rejection message (IE839: C_CUS_REJ) and the examination of the rejection results, the Consignor performs a change of destination as described in Section III.I.1.2.1 Change of Destination (UC2.05).

This scenario is depicted in Figure 69 and Figure 70:
[image: image77.emf] : Consignor : Consignor

 : System: MSA dispatch application : System: MSA dispatch application

 : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA destination application : System: MSA destination application

e-AAD is in the

"Accepted"

state

e-AAD remains in

the "accepted"

state

e-AAD is in the

"Accepted"

state

e-AAD remains in

the "accepted"

state

The consignee must cancel the

export declaration on behalf of

the consignor since the export

has been released by Customs

before cross checking

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg Structure()

15: Validate Msg Structure()

16: Send Msg(IE839:C_CUS_REJ)

7: Send Msg(IE515:E_EXP_DAT)

9: Send Msg(IE501:C_AER_SND)

8: Validate Msg DTD()

10: Validate Msg DTD()

11: e-AAD and export declaration cross checking

12: Send Msg(IE839:C_CUS_REJ)

14: Send Msg(IE839:C_CUS_REJ)

17: Send Msg(IE813: C_UPD_DAT)

The consignor may submit change of Destination.The

sequence of actions appear in the relevant sequence

diagram where Change of Destination happens when

prior e-AAD state is accepted.

13: Send Msg(IE839:C_CUS_REJ)

Figure 69: TSD - Export Operation at Office of Export followed by cross-checking failure after the export release, export declaration cancellation and submission of change of destination

[image: image78.emf] : Consignor

 : System: MSA dispatch application

 : Consignee (forwarding

agent)

 : Customs Export Application

 : System: MSA destination application

2: Validate Msg Structure()

3: Validate Msg Content()

15: Validate Msg Structure()

6: Validate Msg Structure()

8: Validate Msg DTD()

10: Validate Msg DTD()

11: e-AAD and export declaration cross checking

1: Send Msg(IE815:N_AAD_SUB)

17: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801:C_AAD_VAL)

16: Send Msg(IE839:C_CUS_REJ)

5: Send Msg(IE801:C_AAD_VAL)

14: Send Msg(IE839:C_CUS_REJ)

7: Send Msg(IE515:E_EXP_DAT)

9: Send Msg(IE501:C_AER_SND)

13: Send Msg(IE839:C_CUS_REJ)

12: Send Msg(IE839:C_CUS_REJ)

Figure 70: CLD - Export Operation at Office of Export followed by cross-checking failure after the export release, export declaration cancellation and submission of change of destination
III.I.1.5.3.6 Export Operation at Office of Export and movement not released by Customs followed by new export declaration

In this scenario, the movement has not been released by Customs, and therefore the concerned e-AADs have been maintained in the “Accepted” state. Following, the forwarding agent submits a new export declaration.

This scenario may be followed by:

· Positive cross-checking, release by Customs and export confirmation of exit (Section III.I.1.5.2.1 Export Operation at Office of Export followed by Export confirmation of exit);

· Positive cross-checking, release by Customs, and export cancellation of exit (Section III.I.1.5.2.2 Export Operation at Office of Export followed by Export Cancellation of exit);

· Negative cross-checking, export declaration cancellation and submission of new export declaration (Section III.I.1.5.2.3 Export Operation at Office of Export followed by negative cross-checking before the export release and Change of Destination, Section III.I.1.5.2.4 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of new export declaration, Section III.I.1.5.2.5 Export Operation at Office of Export followed by negative cross-checking after the export release, export declaration cancellation and submission of change of destination);

· No release by Customs (Section III.I.1.5.2.6 Export Operation at Office of Export and movement not released by Customs followed by new export declaration, Section III.I.1.5.2.7 Export Operation at Office of Export and movement not released by Customs followed by change of destination).

This scenario is depicted in Figure 71 and Figure 72:
[image: image79.emf] : Consignor : Consignor : System: MSA dispatch application : System: MSA dispatch application : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA destination application : System: MSA destination application

e-AAD is in the

"Accepted"

state

e-AAD is in the

"Accepted"

state

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg Structure ()

7: Send Msg(IE515:E_EXP_DAT)

8: Validate Msg DTD()

The exportation has been rejected by Customs. The

Customs Application informs the forwarding agent for

this result

The forwarding agent may

resubmit the export declaration

until it is accepted by

Customs.

Figure 71: TSD - Export Operation at Office of Export and movement not released by Customs followed by new export declaration

[image: image80.emf] : Consignor

 : System: MSA dispatch application

 : Consignee (forwarding agent)

 : Customs Export Application

 : System: MSA destination application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure ()

8: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE801:C_AAD_VAL)

7: Send Msg(IE515:E_EXP_DAT)

Figure 72: CLD - Export Operation at Office of Export and movement not released by Customs followed by new export declaration
III.I.1.5.3.7 Export Operation at Office of Export and movement not released by Customs followed by change of destination

In this scenario, the movement has not been released by Customs, and therefore the AADs have been maintained in the “Accepted” state. Following, the Consignor issues a change of destination.

This scenario is depicted in Figure 73 and Figure 74:
[image: image81.emf] : Consignor : Consignor : System: MSA dispatch application : System: MSA dispatch application : Consignee (forwarding

agent)

 : Consignee (forwarding

agent)

 : Customs Export Application : Customs Export Application : System: MSA destination application : System: MSA destination application

e-AAD is in the

"Accepted"

state

e-AAD is in the

"Accepted"

state

The exportation has been rejected by Customs. The

Customs Application informs the forwarding agent for

this result

1: Send Msg(IE815:N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE801:C_AAD_VAL)

6: Validate Msg Structure ()

7: Send Msg(IE515:E_EXP_DAT)

9: Validate Msg DTD()

8: Send Msg(IE813: C_UPD_DAT)

The consignee may submit

change of Destination.The

sequence of actions

appear in the relevant

sequence diagram where

Change of Destination

happens when prior e-AAD

state is accepted.

Figure 73: TSD - Export Operation at Office of Export and movement not released by Customs followed by change of destination

[image: image82.emf] : Consignor

 : System: MSA dispatch application

 : Consignee (forwarding agent)

 : Customs Export Application

 : System: MSA destination application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure ()

9: Validate Msg DTD()

1: Send Msg(IE815:N_AAD_SUB)

8: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801:C_AAD_VAL)

5: Send Msg(IE801:C_AAD_VAL)

7: Send Msg(IE515:E_EXP_DAT)

Figure 74: CLD - Export Operation at Office of Export and movement not released by Customs followed by change of destination
III.I.2 Exception Handling (EH)

III.I.2.1 Exception Handling in Common Domain

This section describes the mechanisms that shall be available for handling exceptional cases in the Common Domain.

III.I.2.1.1 Rejection due to functional errors

This section describes a mechanism for handling exceptional cases in the Common Domain occurring due to functional error(s). These functional error(s) are described in detail in Chapter VII.I.3 Exception Handling of Section VII. The scenarios in Chapter VII.I.3 Exception Handling of Section VII are indicative and aim to provide some information regarding the usage of these functional error(s).

· An element may contain a value, which violates the format of the element;

· An element may contain a value, which has exceeded the maximum or minimum length specified;
· The message contains an ARC, which has an invalid structure;

· A data group may have too many repetitions than allowed;
· A mandatory/required element is missing from the message;
· The received message is out of sequence;

· The received message contains an ARC, which is unknown to the MSA (no e-AAD with the specific ARC exists);

· The received message has the same Message identification (MsgID) with the one received before Duplication is detected.

An indicative example of functional error is the case where a second message is received with the same message identification (MsgID).

III.I.2.1.2 Manual Status Request/Response

Several information exchanges of an excise operation (identified by a unique ARC) require a timely response. This response is in the form of another information exchange. Due to exceptions, those responses may not arrive in time. The Status Request/Response mechanism could be used at any time by the MSA dispatch application/MSA destination application to request the status of a particular e-AAD at the MSA destination application/MSA dispatch application.

The Status Request (IE904: C_STD_REQ) is triggered manually by the MSA Official for a specific ARC existing in the system. The MSA Official shall indicate that he/she is simply enquiring about the status of the movement. If the IE904: C_STD_REQ sending MSA is the MSA of Dispatch, then the MSA Official shall also provide the sequence number of the last business (event) message sent to the requested MSA of Destination for the specific ARC. If the IE904: C_STD_REQ sending MSA is the MSA of Destination, then the MSA Official shall also provide the last known sequence number for the specific ARC.

The IE904: C_STD_REQ sending MSA application shall include in the generated Status Request (IE904: C_STD_REQ) message the ARC, the state of the movement as well as the last business (event)
 message received. If the IE904: C_STD_REQ sending MSA is the MSA of Dispatch, then the IE904: C_STD_REQ shall also include the sequence number of the last business (event) message sent to the requested MSA of Destination for the specific ARC. If the IE904: C_STD_REQ sending MSA is the MSA of Destination, then the IE904: C_STD_REQ shall also include the last known sequence number for the specific ARC.
On the other side, the IE904: C_STD_REQ receiving MSA examines the message content to identify what the sending MSA is expecting in reply. In this scenario that the IE904: C_STD_REQ reports a simple status request, the IE904: C_STD_REQ receiving MSA replies with a single message, the Status Response (IE905: C_STD_RSP). The Status Response (IE905: C_STD_RSP) message shall include, the current status of the movement as well as the last received business (event) message from the IE904: C_STD_REQ sending MSA. If the requested MSA is the MSA of Dispatch, then the Status Response (IE905: C_STD_RSP) shall also include the sequence number of the last business (event) message sent to the MSA of Destination for the specific ARC. If the requested MSA is the MSA of Destination, then the Status Response (IE905: C_STD_RSP) shall also include the last known sequence number for the specific ARC.
The figures below (Figure 75 and Figure 76) illustrate an indicative example of the MSA dispatch application requesting the status of an e-AAD, which is found in the “Accepted” state. In that request, the MSA destination application responds with an IE905: C_STD_RSP indicating that e-AAD is also found in the “Accepted” state.

[image: image83.emf] : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

1: Send Msg(IE904:C_STD_REQ [ARC = X && SequenceNumber = Y && State=Accepted && LastMsgRcv=NONE)

3: Send Msg(IE905: C_STD_RSP [ARC = X && SequenceNumber = Z && State=Accepted && LastMsgRcv=IE801)

The MSA dispatch

application realises that

the MSA destination

application has not

received the RoR from

the Consignee

4: Validate Msg Structure()

2: Validate Msg Structure()

Figure 75: TSD - Manual Status Request/Response

[image: image84.emf] : System: MSA dispatch application

 : System: MSA destination application

4: Validate Msg Structure()

2: Validate Msg Structure()

3: Send Msg(IE905: C_STD_RSP [ARC = X && SequenceNumber = Z && State=Accepted && LastMsgRcv=IE801)

1: Send Msg(IE904:C_STD_REQ [ARC = X && SequenceNumber = Y && State=Accepted && LastMsgRcv=NONE)

Figure 76: CLD - Manual Status Request/Response

III.I.2.1.3 Manual Status Synchronisation Request

In Section III.I.2.1.2 Manual Status Request/Response, the MSA Official issues a simple status request, reporting that he/she wishes to receive in reply only the movement status at the communicating MSA. This section presents the “Manual Status Synchronisation Request” mechanism, which could be provided by a MSA to its MSA Officials as a more advanced (sophisticated) use of the “Manual Status Request/Response”. In particular, the “Manual Status Synchronisation Request” could be used at anytime by the MSA Officials to request a movement status synchronisation by receiving in reply of a status request not only the status of the movement but also any missing/delayed messages.

As a general principle, in all scenarios covered by this section if the IE904 sending MSA also receives the delayed message either before or after the reception of the re-submitted message, it should process the first message received, and ignore the second, instead of sending an IE906 to reject it.

The following scenarios have been identified:

III.I.2.1.3.1 Submission of RoR and the e-AAD is under the ‘Accepted’ state at the MSA of Dispatch

According to the following scenario, the RoR (IE818: C_DEL_DAT) has been submitted by the MSA of Destination. However, the IE818: C_DEL_DAT message has not been received by the MSA of Dispatch and the e-AAD is still in the “Accepted” state.

The Status Request (IE904: C_STD_REQ) message is triggered manually by the Official at the MSA of Dispatch. The MSA Official shall provide the ARC of the specific movement accompanied by the sequence number of the last business (event) message sent to the MSA of Destination for the specific ARC. In addition, the MSA Official shall indicate that he/she is also wishing to synchronise the movement state in case a state de-synchronisation is detected.

The MSA dispatch application shall include in the generated Status Request (IE904: C_STD_REQ) message the sequence number of the last business (event) message sent to the MSA of Destination for the specific ARC, the state of the movement (“Accepted”) and the last business (event) message received from the MSA destination application (None). In addition, the national MSA application has to declare in the sending IE904: C_STD_REQ that it requests a Status Synchronisation Request. If the latter is not indicated then only the status of the movement will be returned back from the initiating MSA.

Upon receipt of the Status Request (IE904: C_STD_REQ) message, the MSA destination application examines its content.

The MSA destination application identifies that:

· The MSA dispatch application is still in the “Accepted” state, while the RoR (the IE818: C_DEL_DAT) has already been communicated to it;

· The “Message Type” in the Status Request (IE904: C_STD_REQ) message is “1: Status Synchronisation Request”, indicating that the MSA Official at the MSA of Dispatch wishes also to receive the missing IE818: C_DEL_DAT message in order to synchronise the movement status.

The MSA destination application sends to the MSA dispatch application:

· The Status Response (IE905: C_STD_RSP) message with the status set to “Delivered” or “Partially Refused” or “Refused” and the information that the last received message from the MSA dispatch application is “IE801: C_AAD_VAL” as well as the last known sequence number for the specific ARC, which would be the same with that included in the RoR, followed by;

· The RoR (IE818: C_DEL_DAT).

Upon the reception of a valid RoR (IE818: C_DEL_DAT), the MSA dispatch application validates successfully its structure, stores its data and changes the state of the e-AAD from “Accepted” to “Delivered” or to “Partially Refused” or to “Refused”.

Finally, it is recommended that the MSA dispatch application forwards the RoR (IE818: C_DEL_DAT) to the Consignor.

This scenario is depicted in Figure 77 and Figure 78:

[image: image85.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

MSA destination application sends

the RoR (IE818) but for some

reason this does not reach the

MSA dispatch application

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

5: Send Msg(IE801: C_AAD_VAL)

15: Validate Msg Structure()

16: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

4: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE904: C_STD_REQ [ARC = X && SequenceNumber = Y && State=Accepted && LastMsgRcv=NONE)

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Send Msg(IE905:C_STD_RSP [ARC = X && SequenceNumber = Y && State=Delivered or Partially Refused or Refused && LastMsgRcv=IE801)

14: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

7: Send Msg(IE801: C_AAD_VAL [ARC = X && SequencNumber = Y])

11: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

8: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

Figure 77: TSD - Status Synchronisation Request for a missing RoR (IE818) - Re-submission of RoR (IE818)

[image: image86.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

15: Validate Msg Structure()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL)

16: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

4: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE904: C_STD_REQ [ARC=X && SequenceNumber = Y && State=Accepted && LastMsgRcv=NONE)

13: Send Msg(IE905:C_STD_RSP [ARC = X && SequenceNumber = Y && State=Delivered or Partially Refused or Refused && LastMsgRcv=IE801)

14: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

7: Send Msg(IE801: C_AAD_VAL [ARC = X && SequencNumber = Y])

11: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

8: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

Figure 78: CLD - Status Synchronisation Request for a missing RoR (IE818) - Re-submission of RoR (IE818)
III.I.2.1.3.2 Change of MSA of Destination and the e-AAD is under the ‘Accepted’, or ‘Partially Refused’ or ‘Refused’ state at the MSA of Destination

According to the following scenario, a change of MSA of Destination has occurred. However, the IE813: C_UPD_DAT has not been received by the former MSA of Destination and the e-AAD is still in the “Accepted” or “Partially Refused” or “Refused” state.

The Status Request (IE904: C_STD_REQ) message is triggered manually by the Official at the MSA of Destination. The MSA Official shall provide the ARC of the specific movement accompanied by the last known sequence number for the specific ARC. In addition, the MSA Official shall indicate that he/she is also wishing to synchronise the movement state in case a state de-synchronisation is detected.

The MSA destination application shall include in the generated Status Request (IE904: C_STD_REQ) message the last known sequence number for the specific ARC, the state of the movement (“Accepted” or “Partially Refused” or “Refused”) and the last business (event) message received from the MSA dispatch application (IE801: C_AAD_VAL). In addition, the national MSA application has to declare in the sending IE904: C_STD_REQ that it requests a Status Synchronisation Request. If the latter is not indicated then only the status of the movement will be returned back from the initiating MSA.

Upon receipt of the Status Request (IE904: C_STD_REQ) message, the MSA dispatch application examines its content.

The MSA dispatch application identifies that:

· The MSA destination application is still in the “Accepted” or “Partially Refused” or “Refused” state, while an update message (IE813: C_UPD_DAT) has already been communicated to it;

· The “Message Type” in the Status Request (IE904: C_STD_REQ) message is “1: Status Synchronisation Request”, indicating that the MSA Official at the MSA of Destination wishes also to receive the missing IE813: C_UPD_DAT message in order to synchronise the movement status.

The MSA dispatch application sends to the MSA destination application:

· The Status Response (IE905: C_STD_RSP) message with the sequence number set to that of the last business (event) message sent to the MSA of Destination, the status set to “Accepted” or “Delivered” or “Partially Refused” or “Refused” and the information that the last received message from the MSA destination application is “None”, when the state in the MSA dispatch application is “Accepted”, or that the last received message from the MSA destination application is RoR (IE818: C_DEL_DAT), when the state is “Delivered”, “Refused” or “Partially Refused”, followed by;

· The update message (IE813: C_UPD_DAT).

Upon the reception of a valid update message (IE813: C_UPD_DAT), the MSA destination application validates successfully the structure of the update message, stores the updated information and changes the state of the e-AAD from “Accepted” or “Refused” to “Diverted” or from “Partially Refused” to “Delivered”, which are final states.

Finally, it is recommended that the MSA destination application forwards the notification message (IE803: C_AAD_NOT) to the former Consignee.

This scenario is depicted in Figure 79 and Figure 80:

[image: image87.emf] : Consignor : Consignor

 : System: MSA dispatch application : System: MSA dispatch application : System: MSA destination application : System: MSA destination application

 : Consignee : Consignee

NEW : System: MSA destination

application

NEW : System: MSA destination

application

NEW : Consignee NEW : Consignee

The update message

(IE813:C_UPD_DAT) has not

received by the former MSA

destination

1: Send Msg(IE815: N_AAD_SUB)

14: Send Msg(IE813: C_UPD_DAT)

2: Validate Msg Structure()

3: Validate Msg Content()

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Y])

13: Validate Msg Structure()

15: Validate Msg Structure()

18: Send Msg(IE813: C_UPD_DAT [ARC=X && SequenceNumber=Z])

16: Validate Msg Content()

22: Validate Msg Structure()

23: Validate Msg Content()

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Y])

24: Send Msg(IE905: C_STD_RSP [ARC=X && SequenceNumber = Z && State=Delivered && LastMsgRcv=IE818)

25: Send Msg(IE813: C_UPD_DAT [ARC=X && SequenceNumber=Y])

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE818:C_DEL_DAT [ARC=X && SequenceNumber = Y && Refusal])

20: Send Msg(IE904: C_STD_REQ [ARC=X && SequenceNumber=Y && State=Accepted && LastMsgRcv=IE801])

26: Validate Msg Structure()

27: Validate Msg Content()

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Y])

12: Send Msg(IE818:C_DEL_DAT [ARC=X && SequenceNumber = Y && Refusal])

28: Send Msg(IE803: C_AAD_NOT [ARC=X && SequenceNumber = Y])

8: Send Msg(IE818: C_DEL_DAT [ARC=X && SequenceNumber = Y && Refusal])

17: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Z])

19: Validate Msg Structure()

21: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Z])

Figure 79: TSD - Status Synchronisation Request for a missing Update Message (IE813) - Re-submission of Update Message (IE813)

[image: image88.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

NEW : System: MSA destination application

NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Y])

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Y])

6: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Y])

8: Send Msg(IE818: C_DEL_DAT [ARC=X && SequenceNumber = Y && Refusal])

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE818:C_DEL_DAT [ARC=X && SequenceNumber = Y && Refusal])

12: Send Msg(IE818:C_DEL_DAT [ARC=X && SequenceNumber = Y && Refusal])

13: Validate Msg Structure()

14: Send Msg(IE813: C_UPD_DAT)

15: Validate Msg Structure()

16: Validate Msg Content()

17: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Z])

18: Send Msg(IE813: C_UPD_DAT [ARC=X && SequenceNumber=Z])

19: Validate Msg Structure()

20: Send Msg(IE904: C_STD_REQ [ARC=X && SequenceNumber=Y && State=Accepted && LastMsgRcv=IE801])

21: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Z])

22: Validate Msg Structure()

23: Validate Msg Content()

24: Send Msg(IE905: C_STD_RSP [ARC=X && SequenceNumber = Z && State=Delivered && LastMsgRcv=IE818)

25: Send Msg(IE813: C_UPD_DAT [ARC=X && SequenceNumber=Y])

26: Validate Msg Structure()

27: Validate Msg Content()

28: Send Msg(IE803: C_AAD_NOT [ARC=X && SequenceNumber = Y])

Figure 80: CLD - Status Synchronisation Request for a missing Update Message (IE813) - Re-submission of Update Message (IE813)
III.I.2.1.3.3 Cancellation and the e-AAD is under the ‘Accepted’ state at the MSA of Destination

According to the following scenario, a movement has been cancelled at the MSA of Dispatch (e-AAD state at the MSA of Dispatch = “Cancelled”). However, the cancellation notification (IE810: C_CAN_DAT) has not been properly received by the MSA of Destination and the e-AAD is still in the “Accepted” state.

The Status Request (IE904: C_STD_REQ) message is triggered manually by the Official at the MSA of Destination. The MSA Official shall provide the ARC of the specific movement accompanied by the last known sequence number for the specific ARC. In addition, the MSA Official shall indicate that he/she is also wishing to synchronise the movement state in case a state de-synchronisation is detected.

The MSA destination application shall include in the generated Status Request (IE904: C_STD_REQ) message the last known sequence number for the specific ARC, the state of the movement (“Accepted”) as well as the last business (event) message received from the MSA dispatch application (IE801: C_AAD_VAL). In addition, the national MSA application has to declare in the sending IE904: C_STD_REQ that it requests a Status Synchronisation Request. If the latter is not indicated then only the status of the movement will be returned back from the initiating MSA.

Upon receipt of the Status Request (IE904: C_STD_REQ) message, the MSA dispatch application examines its content.

The MSA dispatch application identifies that:

· The MSA destination application is still in the “Accepted” state, while a cancellation notification (IE810: C_CAN_DAT) has already been communicated to it;

· The “Message Type” in the Status Request (IE904: C_STD_REQ) message is “1: Status Synchronisation Request”, indicating that the MSA Official at the MSA of Destination wishes also to receive the missing IE810: C_CAN_DAT message in order to synchronise the movement status.

The MSA dispatch application sends to the MSA destination application:

· The Status Response (IE905: C_STD_RSP) message with the sequence number set to that of the last business (event) message sent to the MSA of Destination, the status set to “Cancelled” and the information that the last received message from the MSA destination application is “None”, followed by;

· The cancellation notification message (IE810: C_CAN_DAT).

Upon the reception of a valid cancellation (IE810: C_CAN_DAT), the MSA destination application validates successfully the structure of the cancellation message, stores the cancellation information and changes the state of the e-AAD from “Accepted” to “Cancelled”, which is a final state.

Finally, it is recommended that the MSA destination application forwards the cancellation notification (IE810: C_CAN_DAT) to the Consignee.

This scenario is depicted in Figure 81 and Figure 82:

[image: image89.emf] : Consignor : Consignor

 : System: MSA dispatch application : System: MSA dispatch application : System: MSA destination application : System: MSA destination application

 : Consignee : Consignee

{Before

dispatch}

1: Send Msg(IE815: N_AAD_SUB)

8: Send Msg(IE810: C_CAN_DAT [ARC=X && SequenceNumber=Y])

2: Validate Msg Structure()

3: Validate Msg Content()

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE810: C_CAN_DAT [ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

6: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

12: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber = Y && State=Accepted && LastMsgRcv=IE801)

The cancellation

notification (IE810:

C_CAN_DAT) has not

been received by the MSA

of Destination

13: Validate Msg Structure()

14: Send Msg(IE905:C_STD_RSP [Positive for ARC=X && SequenceNumber = Y && State=Cancelled && LastMsgRcv=None)

15: Validate Msg Structure()

16: Send Msg(IE810: C_CAN_DAT) [ARC=X && SequenceNumber=Y]

17: Validate Msg Structure()

18: Send Msg(IE810: C_CAN_DAT [ARC=X && SequenceNumber=Y])

Figure 81: TSD - Status Synchronisation Request for a missing Cancellation Notification (IE810) - Re-submission of Cancellation Notification (IE810)

[image: image90.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

6: Validate Msg Structure()

15: Validate Msg Structure()

17: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

8: Send Msg(IE810: C_CAN_DAT [ARC=X && SequenceNumber=Y])

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

11: Send Msg(IE810: C_CAN_DAT [ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

14: Send Msg(IE905:C_STD_RSP [Positive for ARC=X && SequenceNumber = Y && State=Cancelled && LastMsgRcv=None)

16: Send Msg(IE810: C_CAN_DAT) [ARC=X && SequenceNumber=Y]

12: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber = Y && State=Accepted && LastMsgRcv=IE801)

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

18: Send Msg(IE810: C_CAN_DAT [ARC=X && SequenceNumber=Y])

Figure 82: CLD - Status Synchronisation Request for a missing Cancellation Notification (IE810) - Re-submission of Cancellation Notification (IE810)
III.I.2.1.3.4 e-AAD Manual Closure and the e-AAD is under the ‘Accepted’ state at the MSA of Destination

According to the following scenario, the movement has been manually closed at the MSA of Dispatch (e-AAD state at the MSA of Dispatch = “e-AAD Manually Closed”). However, the Status Response (IE905: C_STD_RSP) has not properly received by the MSA of Destination and the e-AAD is still in the “Accepted” state (please, also refer to Section III.I.2.1.5 Manual Closing of the Movement).

The Status Request (IE904: C_STD_REQ) message is triggered manually by the Official at the MSA of Destination. The MSA Official shall provide the ARC of the specific movement accompanied by the last known sequence number for the specific ARC. In addition, the MSA Official shall indicate that he/she is also wishing to synchronise the movement state in case a state de-synchronisation is detected.

The MSA destination application shall include in the generated Status Request (IE904: C_STD_REQ) message the last known sequence number for the specific ARC, the state of the movement (“Accepted”) and the last business (event) message received from the MSA dispatch application (IE801: C_AAD_VAL). In addition, the national MSA application has to declare in the sending IE904: C_STD_REQ that it requests a Status Synchronisation Request.

Upon receipt of the Status Request (IE904: C_STD_REQ) message, the MSA dispatch application examines its content.

The MSA dispatch application identifies that:

· The MSA destination application is still in the “Accepted” state, while a manual closure notification (IE905: C_STD_RSP) has already been communicated to it;

· The “Message Type” in the Status Request (IE904: C_STD_REQ) message is “1: Status Synchronisation Request”, indicating that the MSA Official at the MSA of Destination wishes also to receive the missing IE905: C_STD_RSP message in order to synchronise the movement status.

The MSA dispatch application sends to the MSA destination application:

· The Status Response (IE905: C_STD_RSP) message with the sequence number set to that of the last business (event) message sent to the MSA of Destination, the status set to “e-AAD Manually Closed” and the information that the last received message from the MSA destination application is “None”.

As, in this case, the missing message is the IE905: C_STD_RSP, the MSA dispatch application shall not send it twice to the MSA destination application.

Upon the reception of a valid IE905: C_STD_RSP message, the MSA destination application validates successfully its structure, stores its information and changes the state of the e-AAD from “Accepted” to “e-AAD Manually Closed”, which is a final state.

This scenario is depicted in Figure 83 and Figure 84:

[image: image91.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

{Movement Manually

Closed}

e-AAD Manually Closed

at Destination

IE905 has not been

received by the MSA of

Dispatch

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

9: Send Msg(IE905:C_STD_RSP [ARC=X && SequenceNumber = Y && State=e-AAD Manually Closed && LastMsgRcv=None])

8: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber = Y && State=Accepted && LastMsgRcv=IE801)

6: Validate Msg Structure()

10: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

Figure 83: TSD - Status Synchronisation Request for a missing Manual Closure Notification (IE905)

[image: image92.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

10: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

8: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber = Y && State=Accepted && LastMsgRcv=IE801)

9: Send Msg(IE905:C_STD_RSP [ARC=X && SequenceNumber = Y && State=e-AAD Manually Closed && LastMsgRcv=None])

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

Figure 84: CLD - Status Synchronisation Request for a missing Manual Closure Notification (IE905)
III.I.2.1.4 Automatic Status Synchronisation Request

A MSA shall use the IE904/IE905 mechanism to handle exceptions. In particular, the IE904/IE905 mechanism shall be automatically triggered in order to identify whether an e-AAD/RoR is missing due to a technical failure or due to a business discrepancy.

III.I.2.1.4.1 Receipt of RoR for Unknown ARC

The basic scenario describes the procedure of submission of e-AAD (Chapter III.I.1.1.1). According to that scenario, both the MSA dispatch application and the MSA destination application register successfully the new e-AAD.

In particular, there is an exceptional case, where the MSA destination application may not receive the e-AAD (IE801: C_AAD_VAL) from the MSA dispatch application (possibly due to a network failure). Hence, an issue is raised when the movement physically arrives at Destination on time and the Consignee wants to send the RoR (IE818: C_DEL_DAT). In that case, the MSA destination application shall be able to automatically request the e-AAD information from the MSA dispatch application.

Hence, the Consignee sends the RoR for a specific ARC, which is unknown at the MSA of Destination application. Then, the MSA destination application automatically generates and sends to the MSA dispatch application a Status Request (IE904: C_STD_REQ) for the ARC and sequence number included in the received RoR (sent by the Consignee), including also the information that the status is “None” and no message has been received from the MSA dispatch application. In addition, the indication of a Status Synchronisation Request in the IE904 will be automatically set by the application.

Upon the reception of the Status Request (IE904: C_STD_REQ), the MSA dispatch application validates the request and checks if the ARC is known.

The following two scenarios may be encountered:

III.I.2.1.4.1.1 Missed e-AAD

The MSA dispatch application detects that the requested ARC is known and that it is in the “Accepted” state. It also detects that the “Message Type” in the IE904 message is “1: Status Synchronisation Request”, meaning that the IE904 message was submitted for state synchronisation purposes. In this case, the MSA dispatch application responds by sending:

· The Status Response (IE905: C_STD_RSP) with the sequence number set to that of the last business (event) message sent to the MSA of Destination, the status set to “Accepted” and the information that the last message received from the MSA destination application is “None”;

· The missing e-AAD (IE801: C_AAD_VAL) to the MSA destination application.

The received e-AAD is stored by the MSA destination application and the movement state is set to “Accepted”.

Moreover, the MSA destination application proceeds with the successful validation of the draft RoR, the message exchanges and the state transitions as the scenario in Section III.I.1.1.1.1 defines.

If the MSA of destination application also receives the delayed e-AAD (IE801: C_AAD_VAL), either before or after the reception of the re-submitted e-AAD Response (IE801: C_AAD_VAL), it should process the first message received and ignore the second, instead of sending an IE906 to reject it.

This scenario is depicted in Figure 85 and Figure 86:

[image: image93.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

1: Send Msg(IE815: N_AAD_SUB)

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Y])

17: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

5: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

8: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber=Y && State=NONE && LastMsgRcV=NONE])

The movement physically

arrives at Destination. The

e-AAD has not been received

from the MSA dispatch

application. The e-AAD is

requested from the MSA

destination application

The status request is

forwarded to the MSA

dispatch application

Due to a network

failure, the IE801

never reaches the MSA

destination application

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

7: Validate Msg Content()

16: Validate Msg Structure()

9: Validate Msg Structure()

10: Send Msg(IE905:C_STD_RSP [Positive for ARC=X && SequenceNumber=Y && State=NONE && LastMsgRcV=NONE])

11: Validate Msg Structure()

12: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

13: Validate Msg Structure()

14: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

15: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

Figure 85: TSD - Positive response on a requested e-AAD

[image: image94.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

9: Validate Msg Structure()

16: Validate Msg Structure()

6: Validate Msg Structure()

7: Validate Msg Content()

11: Validate Msg Structure()

13: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = Y])

17: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

8: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber=Y && State=NONE && LastMsgRcV=NONE])

15: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

10: Send Msg(IE905:C_STD_RSP [Positive for ARC=X && SequenceNumber=Y && State=NONE && LastMsgRcV=NONE])

12: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

14: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

5: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber = Y])

Figure 86: CLD - Positive response on a requested e-AAD
III.I.2.1.4.1.2 Unknown e-AAD

In the case that the requested ARC is found to be unknown to the MSA dispatch application, an IE905 is generated with “Status = None” and the sequence number set to the same as the one in the received IE904 (since the ARC is not known at MSA of Dispatch) and is sent to the MSA destination application.
When such a response is received from the MSA dispatch application, the MSA destination application rejects the draft RoR. The communication of rejection regarding the RoR is a national issue. However, it is recommended that the functional errors to be forwarded to the Consignee using the refusal message (IE704: N_REJ_DAT).

This scenario is depicted in Figure 87 and Figure 88:

[image: image95.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

The movement physically

arrives at Destination. The

e-AAD has not been received

from the MSA dispatch

application. The e-AAD is

requested from the MSA

destination application

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

9: Validate Msg Structure()

6: Validate Msg Structure()

8: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber=Y && State=NONE && LastMsgRcv=NONE])

7: Validate Msg Content()

11: Validate Msg Structure()

12: Send Msg(IE704:N_REJ_DAT)

5: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

10: Send Msg(IE905:C_STD_RSP [Negative for ARC=X && SequenceNumber=Y && State=NONE && LastMsgRcV=NONE])

A negative response

(IE905) is sent since

the requested e-AAD

is not known at the

MSA of Dispatch

Figure 87: TSD - Negative response on a requested e-AAD
[image: image96.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

9: Validate Msg Structure()

6: Validate Msg Structure()

7: Validate Msg Content()

11: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

8: Send Msg(IE904:C_STD_REQ [ARC=X && SequenceNumber=Y && State=NONE && LastMsgRcv=NONE])

10: Send Msg(IE905:C_STD_RSP [Negative for ARC=X && SequenceNumber=Y && State=NONE && LastMsgRcV=NONE])

5: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

12: Send Msg(IE704:N_REJ_DAT)

Figure 88: CLD - Negative response on a requested e-AAD

III.I.2.1.4.2 TIM_AAD Expiration

A particular scenario is described below where the Status Request/Response is automatically triggered by the MSA dispatch application to examine why the TIM_AAD timer expired without receiving the RoR. This mechanism enables the MSA dispatch application to identify when the RoR has not been received due to technical problems and when the RoR has not been sent by the Consignee within the allocated time.

III.I.2.1.4.2.1 Missed “RoR”

An e-AAD is submitted and registered successfully in both MSA dispatch and MSA destination applications (Chapter III.I.1.1.1). Moreover, the Consignee sends a RoR to the MSA destination application. The MSA destination application records successfully the RoR, sets the state of the movement to the “Delivered” or “Partially Refused” or “Refused” state and forwards it to the MSA dispatch application. For some reason, the RoR (IE818: C_DEL_DAT) is not received by the MSA dispatch application (missed/delayed RoR) until the expiration of TIM_AAD timer.

Hence, the MSA dispatch application sends a Status Request (IE904: C_STD_REQ) to the MSA destination application by including the ARC and the sequence number of the last business (event) message sent to the MSA of Destination and the information that the e-AAD at MSA of Dispatch is found on the “Accepted” state and no message has been received from the MSA destination application. In addition, the indication of a Status Synchronisation Request in the IE904 will be automatically set by the application.

The MSA destination application receives the Status Request (IE904: C_STD_REQ) and examines the contained information. The MSA destination application realises that the MSA dispatch has not received the RoR (IE818: C_DEL_DAT) since it is found on the “Accepted” state and no message has been received from the MSA destination application before. Automatically, the MSA destination application:

· Sends the Status Response (IE905: C_STD_RSP) message mentioning the last known sequence number of the movement and that the e-AAD on the MSA destination application is found in the “Delivered” or “Partially Refused” or “Refused” state and the last received message from the MSA dispatch application is the e-AAD information (IE801: C_AAD_VAL);

· Re-sends the RoR (IE818: C_DEL_DAT) to the MSA dispatch application in order to update the movement state at Dispatch.

Upon the reception of the Status Response (IE905: C_STD_RSP) from the MSA destination application, the MSA dispatch application understands that it is not the Consignee responsible for not sending the RoR, since the MSA destination application is already found on the “Delivered” or “Partially Refused” or “Refused” state. This means that the MSA dispatch application does not send the reminder asking for explanations but it waits for the reception of the regenerated message. When the RoR (IE818: C_DEL_DAT) is received, it is registered at the MSA of Dispatch and the state of the e-AAD changes to “Delivered” or “Partially Refused” or “Refused”.
The complete message exchange for this scenario is shown in Figure 89 and Figure 90:

[image: image97.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

MSA destination application

sends the RoR (IE818) but for

some reason this does not

reach the MSA dispatch

application

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = X])

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y)

11: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

8: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

12: Send Msg(IE904: C_STD_REQ [ARC=X && SequenceNumber=Y && State=Accepted && LastMsgRcv=NONE])

{TIM_AAD

expired}

15: Validate Msg Structure()

16: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

13: Send Msg(IE905: C_STD_RSP [ARC=X && SequenceNumber=Y && State=Delivered or Partially Refused or Refused && LastMsgRcv=IE801])

14: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

Figure 89: TSD - Status Request/Response after the TIM_AAD timer expiration - Missed RoR

[image: image98.emf] : Consignor

 : System: MSA dispatch

application

 : System: MSA destination

application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

15: Validate Msg Structure()

0: Validate Msg Structure()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

0: Validate Msg Structure()

0: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

16: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber = X])

12: Send Msg(IE904: C_STD_REQ [ARC=X && SequenceNumber=Y && State=Accepted && LastMsgRcv=NONE])

13: Send Msg(IE905: C_STD_RSP [ARC=X && SequenceNumber=Y && State=Delivered or Partially Refused or Refused && LastMsgRcv=IE801])

14: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y)

11: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

8: Send Msg(IE818: C_DEL_DAT [Acceptance for ARC=X && SequenceNumber=Y])

Figure 90: CLD - Status Request/Response after the TIM_AAD timer expiration - Missed RoR

III.I.2.1.4.2.2 Delayed RoR - Reminder at expiry of time limit for Report of Receipt (UC2.33)

The purpose of this scenario is to describe the message exchange protocol when the Consignee fails to submit the RoR within the allocated TIM_AAD timer. The message exchange sequence is illustrated in Figure 91. The scenario prerequisites that a draft e-AAD has been previously submitted, as described in Chapter III.I.1.1.1, and has been made available to all concerned direct partners in “Accepted” state. It is also assumed that all validations of the incoming messages pass successfully.

When the TIM_AAD timer expires, the MSA dispatch application sends a Status Request (IE904: C_STD_REQ) to the MSA destination application for the specific ARC by including the sequence number of the last business (event) message sent to the MSA of Destination and the information that the e-AAD at MSA of Dispatch is found on the “Accepted” state and no message has been received from the MSA destination application before.

The MSA destination application receives the Status Request (IE904: C_STD_REQ) and examines the contained information. The MSA destination application responds to that request with the Status Response (IE905: C_STD_RSP) message mentioning the last known sequence number of the movement and that the MSA destination application is found on the “Accepted” state and the last received message from the MSA dispatch application is the e-AAD information (IE801: C_AAD_VAL).

Upon the reception of the Status Response (IE905: C_STD_RSP) from the MSA destination application, the MSA dispatch application understands that the Consignee has not sent the RoR within the allocated time. Hence, the MSA dispatch application automatically flags the concerned e-AAD to allow further retrieval for examination by verification officers and generates a reminder/flagging message (IE802: C_EXC_REM) that is sent to the Consignor and to the MSA destination application as a notification of the RoR delay.

Upon reception and successful validation of the flagging message (IE802: C_EXC_REM), the MSA destination application automatically flags the concerned e-AAD to allow further retrieval for examination by verification officers and forwards it (optionally), if relevant, to the Consignee to provide his/her own explanations on the delay.

Upon receipt of the reminder message (IE802: C_EXC_REM), the Consignor is committed to enquire and, if relevant, provide explanations on the detected delay by preparing and submitting back to the MSA dispatch application an explanation message (IE837: C_DEL_EXP).

Upon receipt and successful validation of the explanation message (IE837: C_DEL_EXP), the MSA dispatch application forwards it to the MSA destination application, which in turn proceeds to its successful validation.

Following the receipt of the reminder message (IE802: C_EXC_REM), the Consignee is committed to respond by preparing and sending to the MSA destination application an explanation message on the actual situation (IE837: C_DEL_EXP). It is to be noted, though, that the provision of explanations does not relieve the Consignee from his/her obligation to submit the RoR as soon as possible.

In case the Consignee provides explanations, then upon the receipt of the explanation message (IE837: C_DEL_EXP), the MSA destination application validates it successfully and forwards it to the MSA dispatch application to notify it of the reasons for the delay.

No state transitions result from the completion of the reminder for the RoR process at the involved MSA dispatch and destination applications. This scenario is depicted in Figure 91 and Figure 92.
[image: image99.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

{TIM_AAD

expired}

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

6: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

9: Send Msg(IE905:C_STD_RSP [ARC=X && SequenceNumber=Y && State=Accepted && LastMsgRcv=IE801)

10: Send Msg(IE802: C_EXC_REM [ARC=X && SequenceNumber=Y])

11: Send Msg(IE802: C_EXC_REM [ARC=X && SequenceNumber=Y])

12: Validate Msg Structure()

13: Send Msg(IE802: C_EXC_REM [ARC=X && SequenceNumber=Y])

14: Send Msg(IE837: C_DEL_EXP [ARC=X && SequenceNumber=Y])

15: Validate Msg Structure()

16: Send Msg(IE837: C_DEL_EXP [ARC=X && SequenceNumber=Y])

17: Validate Msg Structure()

18: Send Msg(IE837: C_DEL_EXP [ARC=X && SequenceNumber=Y])

19: Validate Msg Structure()

20: Send Msg(IE837: C_DEL_EXP [ARC=X && SequenceNumber=Y])

21: Validate Msg Structure()

8: Send Msg(IE904: C_STD_REQ [ARC=X && SequenceNumber=Y && State=Accepted && LastMsgRcv=NONE)

Figure 91: TSD - Status Request/Response after the TIM_AAD timer expiration - Reminder for RoR

[image: image100.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

15: Validate Msg Structure()

21: Validate Msg Structure()

6: Validate Msg Structure()

12: Validate Msg Structure()

17: Validate Msg Structure()

19: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

14: Send Msg(IE837: C_DEL_EXP [ARC=X && SequenceNumber=Y])

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

10: Send Msg(IE802: C_EXC_REM [ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

11: Send Msg(IE802: C_EXC_REM [ARC=X && SequenceNumber=Y])

16: Send Msg(IE837: C_DEL_EXP [ARC=X && SequenceNumber=Y])

8: Send Msg(IE904: C_STD_REQ [ARC=X && SequenceNumber=Y && State=Accepted && LastMsgRcv=NONE)

9: Send Msg(IE905:C_STD_RSP [ARC=X && SequenceNumber=Y && State=Accepted && LastMsgRcv=IE801)

20: Send Msg(IE837: C_DEL_EXP [ARC=X && SequenceNumber=Y])

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

13: Send Msg(IE802: C_EXC_REM [ARC=X && SequenceNumber=Y])

18: Send Msg(IE837: C_DEL_EXP [ARC=X && SequenceNumber=Y])

Figure 92: CLD - Status Request/Response after the TIM_AAD timer expiration - Reminder for RoR

III.I.2.1.5 Manual Closing of the Movement

This scenario has been added to support the “Interoperability Issues due to the Co-existence of Paper-based System & EMCS” as this has been described in the SD [A2].

The manual closing of the movement functionality is intended to be used as an exception handling mechanism only for movements that is not possible to close in the system because the procedure to be followed is not supported electronically. An indicative example is the case of splitting "Refused" movements in FS0/FS1 (that is, movements that have been initiated electronically, have been refused electronically by the Consignee and have been split paper-based by the Consignor, as the splitting procedure is not supported electronically in FS0/FS1). However, other cases where the manual closure functionality could be needed also exist, i.e. when events and control during movements happen (as defined in FESS Section IV [A1], an event is any occurrence that is considered worth signaling to the MSAs, for instance loss, destruction or theft of a document, of part, or all of the goods, etc.); either directly following an event report (e.g. total loss of goods), or following a control, or for any other reason, such as an ascertained fraud, a MSA is entitled to interrupt the movement. Interruption of the movement is notified to all MSAs concerned by the movement, to the Consignor, to the Consignee, etc. Due to the fact that events and controls electronic management should be implemented during FS2, movements could be closed using this functionality till it is in place.

The recommended solution is the MSA Official at Dispatch to set manually the movement as “e-AAD Manually Closed” (probably using an appropriate action). The MSA dispatch application sets the e-AAD to “e-AAD Manually Closed” state and sends the status of the movement (IE905: C_STD_RSP) to the MSA destination application as a notification that the movement has been closed manually at Dispatch. The MSA Dispatch will also include in the IE905 : C_STD_RSP message the sequence number of the last business message sent to the MSA of Destination.
Upon the reception of the status response (IE905: C_STD_RSP), the MSA destination application validates successfully the message and sets the state of the corresponding e-AAD to “e-AAD Manually Closed”.

Finally, it shall be noted that the manual closure functionality does not result to the generation of the RoR at the MSA of Destination.

The following diagrams (Figure 93 and Figure 94) illustrate, as an indicative example, the scenario of closing manually a movement that has been refused by the MSA destination application:

[image: image101.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

{Movement

Manually Closed}

e-AAD Manually Closed

at Destination

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

13: Validate Msg Structure()

14: Send Msg(IE818:C_DEL_DAT [Refusal for ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

15: Send Msg(IE905:C_STD_RSP [ARC=X && SequenceNumber=Y && e-AAD Manually Closed])

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE818:C_DEL_DAT [Refusal for ARC=X && SequenceNumber=Y])

16: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

12: Send Msg(IE818:C_DEL_DAT [Refusal for ARC=X && SequenceNumber=Y])

8: Send Msg(IE818:C_DEL_DAT [Refusal for ARC=X && SequenceNumber=Y])

Figure 93: TSD - Manually closing of the movement after the refusal of delivery

[image: image102.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

13: Validate Msg Structure()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

16: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

5: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

14: Send Msg(IE818:C_DEL_DAT [Refusal for ARC=X && SequenceNumber=Y])

4: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

15: Send Msg(IE905:C_STD_RSP [ARC=X && SequenceNumber=Y && e-AAD Manually Closed])

11: Send Msg(IE818:C_DEL_DAT [Refusal for ARC=X && SequenceNumber=Y])

7: Send Msg(IE801: C_AAD_VAL [ARC=X && SequenceNumber=Y])

12: Send Msg(IE818:C_DEL_DAT [Refusal for ARC=X && SequenceNumber=Y])

8: Send Msg(IE818:C_DEL_DAT [Refusal for ARC=X && SequenceNumber=Y])

Figure 94: CLD - Manually closing of the movement after the refusal of delivery

III.I.3 State-Transition Diagrams for FS1 for Basic Scenarios
III.I.3.1 STD at Dispatch

The following State Transition Diagram in Figure 95 depicts the State Machine at the MSA of Dispatch. All the transitions are described in detail in Chapter III.I.1.1 up to Chapter III.I.1.4.

[image: image103.emf]Accepted

IE815:N_AAD_SUB

Delivered

IE813:C_UPD_DAT

Refused

Cancelled

e-AAD Manually

Closed

IE813:C_UPD_DAT

(e-AAD Manually Closed)

Partially

Refused

IE818:C_DEL_DAT(

Acceptance)

IE818:C_DEL_DAT(Refusal)

IE810:C_CAN_DAT(only before dispatch)

(e-AAD Manually Closed)

IE818:C_DEL_DAT(Partial Refusal)

IE813:C_UPD_DAT

e-AAD Manually Closed

Figure 95: STD at MSA of Dispatch for FS1

III.I.3.2 STD at Destination

The following State Transition Diagram in Figure 96 depicts the State Machine at the MSA of Destination. All the transitions are described in detail in Chapter III.I.1.1 up to Chapter III.I.1.4.

[image: image104.wmf]

Accepted

Delivered

IE813:C_UPD_DAT(Place of Delivery changed before RoR) /

IE801:C_AAD_VAL(Consignee changed before RoR)

Refused

Cancelled

e-AAD Manually

Closed

Diverted

IE813: C_UPD_DAT(Place of Delivery changed)

IE905:C_STD_RSP(e-AAD

Manually Closed)

IE813:C_UPD_DAT(MS

of DES changed)

IE801:C_AAD_VAL(Consignee changed)

Partially

Refused

IE801:C_AAD_VAL(Consignee changed)

IE905:C_STD_RSP(e-AAD Manually Closed)

IE813: C_UPD_DAT(Change of MS of Destination)

IE801:C_AAD_VAL

IE818:C_DEL_DAT(Acceptance)

IE818:C_DEL_DAT(Refusal)

IE810:C_CAN_DAT

IE905:C_STD_RSP(e-AAD

Manually Closed)

IE813:C_UPD_DAT(MS of DES changed)

IE818:C_DEL_DAT(Partial Refusal)

Figure 96: STD at MSA of Destination for FS1

III.I.4 State-Transition Diagrams for FS1 for Export Scenarios

The following State Transition Diagrams depict the State Machine at the MSA of Dispatch. All the transitions are described in detail in Chapter III.I.1.5. There is a need to distinguish between the two export Use Cases since the state transitions are different.

III.I.4.1 Local Clearance at Export
III.I.4.1.1 STD at Dispatch

[image: image105.emf]Exporting

Refused

Manually

Closed

Cancelled

Accepted for

Export

Accepted

Exporting

Delivered

Refused

Manually

Closed

Cancelled

Accepted for

Export

IE810:C_CAN_DAT

Movement not released

Cross Checking Failure

IE815:N_AAD_SUB(Message Type:Local Clearance)

IE905:C_STD_RSP(e-AAD manually closed)

Exporting

The state transitions from

now on are depicted at

Core Business

IE501:C_AER_SND &

cross-checking success

IE518:C_EXT_RES(A1, A2, A3)

IE518:C_EXT_RES(B1)

IE810:C_CAN_DAT

IE905:C_STD_RSD(e-AAD Manually Closed)

IE813:C_UPD_DAT

Figure 97: STD at Dispatch - Local Clearance
III.I.4.1.2 STD at Destination

The destination side does not exit in this case so a State Transition Diagram is not applicable.

III.I.4.2 Export operation at Office of Export

III.I.4.2.1 STD at Dispatch

III.I.4.2.1.1 When MS of Dispatch is MS of Export as well
[image: image106.emf]Accepted

Exporting

Delivered

Refused

Manually

Closed

Cross Checking failure

IE905: C_STD_RSP(e-AAD manually closed)

The new destination

type may also be any

other destination

type than export.

The state transitions

from now one appear

in the STD for core

business

IE813:C_UPD_DAT(Destination Type=Export)

Movement not released

IE501:AER_SND & positive

cross-checking

IE905:C_STD_RSP(e-AAD manually closed)

IE518:C_EXT_RES(A1, A2, A4)

IE518:C_EXT_RES(B1)

IE905:C_STD_RSP(e-AAD manually closed)

IE815:N_AAD_SUB

Figure 98: STD at Dispatch - Export operation at Office of Export when MS of Dispatch same as MS of Export
III.I.4.2.1.2 When MS of Dispatch is different than MS of Export

[image: image107.emf]Accepted

Exporting

Delivered

Refused

Manually

Closed

IE839:C_CUS_REJ

IE815:N_AAD_SUB

IE905: C_STD_RSP(e-AAD manually closed)

IE829:C_EXP_NOT

Movement not released

IE813:C_UPD_DAT(New Destination Type= Export)

The new destination type

after change of

destination may also be

any other destination type

than export. The actions

now one appear in STD for

core business

The new destination

type may also be

any other destination

type than export.

The actions now one

appear in STD for

core business

IE813:C_UPD_DAT(New Destination Type=Export)

IE905: C_STD_RSP(e-AAD manually closed)

IE818:C_DEL_DAT(Acceptance)

IE818:C_DEL_DAT(Refusal)

IE905:C_STD_RSP(e-AAD manually closed)

Figure 99: STD at Dispatch - Export operation at Office of Export when MS of Dispatch different than MS of Export

III.I.4.2.2 STD at Destination

III.I.4.2.2.1 When MS of Dispatch is MS of export as well

There is no destination application when MS of dispatch is MS of export as well.

III.I.4.2.2.2 When MS of Dispatch is different than MS of Export

[image: image108.emf]The new destination type may also be

any other destination type than export.

The state transitions from now on

appear in the STD for core business

Accepted

Delivered

Exporting

Refused

Manually

Closed

Diverted

Movement not released OR

Cross-checking failure

IE801:C_AAD_VAL

IE501:C_AER_SND & positive cross-checking

IE905:C_STD_RSP(e-AAD

manually closed)

IE813:C_UPD_DAT(MS of

Destination changed &

Destination Type=Export)

IE905:C_STD_RSP(e-AAD

manually closed)

IE801:C_AAD_VAL(Consignee Changed

& Destination Type=Export)

IE813:C_UPD_DAT(Place of Delivery

Changed & Destination Type=Export)

IE905:C_STD_RSP(e-AAD

manually closed)

IE518:C_EXT_RES(

A1, A2, A4)

IE518:C_EXT_RES(B1)

IE813:C_UPD_DAT(MS of

Destination changed &

Destination Type=Export)

Figure 100: STD at Destination - Export operation at Office of Export when MS of Dispatch is different than MS of Export

III.I.5 Functional Timers
	TIM_AAD

	Started:
	UC-201-230 - Start Follow up

When the submitted e-AAD is valid, the MSA dispatch application starts the TIM_AAD timer to expire at the expected end of the movement, which is the date of dispatch plus the journey time.

	Stopped:
	UC-206-410 - Receive Report of Receipt at MSA of dispatch

When the MSA dispatch application receives a Report of Receipt for an accepted delivery, then it stops the timer TIM_AAD.

UC-210-220 - Validate cancellation of e-AAD

When the cancellation of e-AAD is accepted by MSA dispatch application and the TIM_AAD still runs, then the MSA dispatch application stops the timer.

	Reset:
	UC-206-410 - Receive Report of Receipt at MSA of dispatch

When the MSA dispatch application receives a Report of Receipt for an accepted delivery and the TIM_AAD has already expired at the limit date, then the MSA dispatch application resets the flag.
UC-205-230 - Start Follow up

When the journey time of an e-AAD is updated after a change of destination and the TIM_AAD timer has expired, the MSA dispatch application resets the flag that has been raised locally at expiration time. In addition, the MSA dispatch application restarts the timer (TIM_AAD) by setting as new expected end date the updated journey time if and only if the new expected end date is later than the present date.

UC-210-220 - Validate cancellation of e-AAD

When the cancellation of e-AAD is accepted by MSA dispatch application and the TIM_AAD has already expired at the limit date, then the MSA dispatch application resets the flag.

	Update:
	UC-205-230 - Start Follow up

When the journey time of an e-AAD is updated after a change of destination and considering that TIM_AAD has not expired, the MSA dispatch application updates the timer with the new expected end date.

Table 8: TIM_AAD functional timer in FS1
	TIM_EXP

	Started:
	UC-206-230 - Validate Report of Receipt at MSA of destination

If shortages have been declared in the Report of Receipt, then the TIM_EXP timer is initiated by the MSA destination application to expire at the limit date for explanations about shortages from Consignor.

Table 9: TIM_EXP functional timer in FS1
	TIM_CHS

	Started:
	UC-206-410 - Receive Report of Receipt at MSA of dispatch

When the MSA dispatch application receives a Report of Receipt for a refused delivery, then it initiates the TIM_CHS timer to expire at limit date for submission of a change of destination.

	Stopped:
	UC-205-230 - Start follow up

The MSA dispatch application stops the timer when the destination for a movement of which delivery is refused, has changed.

	Reset:
	UC-205-230 - Start follow up

When the timer has already expired and the destination changes for a movement of which delivery is refused, the MSA dispatch application resets the flag for this movement.

Table 10: TIM_CHS functional timer in FS1

Section IV Central Services

This section describes the message exchange protocols between the NDEAs and the Common Domain Central Services applications regarding the collection and the dissemination of Common RD and SEED data.

Sub-Section IV.I Central Services Applications

IV.I.1 SEED

The System for Exchange of Excise Data (SEED) is located in the Common Domain. It provides management and dissemination services regarding information on the Economic Operators register.

SEED has a two-fold role:

· to comply with Article 15a of Council Directive 92/12/EEC, following Council Regulation (EC) No 2073/2004 of 16th November 2004 on administrative cooperation in the field of excise duties; and

· to provide each MSA with an up-to-date copy of the characteristics of all authorised economic operators, so that the validation of an e-AAD (or of any other data set submitted in the course of EMCS movements) may be completed in a Member State, without having to cross-consult information from MSA to MSA.

This is a vital part of the EMCS Central Services and an important dependency for the EMCS core business processes.

IV.I.2 CS/MIS

The Central Services/Management Information System (CS/MIS) is located in the Common Domain. It provides the facilities to assist the monitoring and the reporting on the operations of EMCS. This is performed by collecting, distributing and publishing EMCS business and technical statistics (including availability statistics) and by providing information on movements (ARC follow-up).

This system collects the statistics and availability data from the various MSAs via two physical media (the Web and CCN/CSI) and distributes the information to the MSAs after centralised consolidation.

IV.I.3 Messages involved

In the business area ‘Central Services’, the data that is going to be exchanged in FS1 are grouped in the following categories:

· Reference data;

· SEED data.
The Information Exchanges planned in FS1 are:

· Incremental update or full register of economic operators C_QRO_DAT (IE713), as identified in the process thread UC-114-110, UC-114-240 and UC-116-210 [A1].
· Refusal of update of economic operators C_QRO_REF (IE714), as identified in the process thread UC-114-210 [A1].
· Common request C_REQ_SUB (IE701), as identified in the process thread UC-116-120 and UC-105-110 [A1].
· Refusal of common request C_REQ_REF (IE702).
· Reference data dissemination C_RDD_DAT (IE734), as identified in the process thread UC-106-110 and UC-105-210 [A1].

· The XML NACK C_XML_NCK (IE917) is used for reporting XML formatting errors.

Sub-Section IV.II Exchange of Reference data

IV.II.1 Introduction

The Reference data includes:

· a set of common system parameters, i.e. durations, numbers and codes that are set as committing limits for all Member States in some business cases, typically, a maximum time limit that a MSA is forbidden to exceed but is allowed to shorten, or the list of categories of goods allowed at splitting;

· the various lists of codes to be used in identified fields of the information exchanges throughout EMCS; examples are country codes, transport codes and language codes.

Changes of reference data are decided by the Commission and applied to SEED by the Common Domain Data Administrator. Changes to the EMCS reference data are disseminated by SEED to each MSA according to their dissemination profile preferences. Each MSA is committed to activate the EMCS reference data changes at the latest at the date where it becomes applicable.
IV.II.1.1 Dissemination of Reference Data (UC1.06)
Due to the fact that the reference data are of great importance to the correct functioning of EMCS, the reference data should be accurate and up-to-date. Part of this responsibility is taken by the Common Domain Central Services. The Common Domain Central Services have as a major responsibility the updating of all reference data and the dissemination of these data to the MSAs. The SEED will distribute the reference data changes to all MSAs at a given number of days before they become applicable (typically three or four opening days) according to the validity dates stated in the records. These reference data changes will be received by each MSA whose responsibility is to apply them as soon as possible and at the latest by the date and time where they become applicable.

In detail, SEED will prepare the update message IE734: C_RDD_DAT that combines the updates of reference data to be applied by the MSAs.

The update message IE734 prepared by the SEED will be sent to all the MSAs.

Upon receipt of the update message each MSA applies the updates included in the IE734 message to their database.

The information exchange needed during the dissemination process of reference data is depicted in Figure 101:
[image: image109.emf] : System : SEED : System : SEED

 : MSA : MSA

1: IE734: C_RDD_DAT

Figure 101: Dissemination of Reference data

IV.II.1.2 Re-synchronisation of Reference Data (UC1.05)
In situations where a MSA believes that the reference data registered in the system may be corrupted or outdated compared to the one kept by the SEED, a re-synchronisation process of reference data is deemed necessary. Re-synchronisation of reference data is based on the principle that when a MSA identifies that its local database containing the reference data is outdated compared to the central database of the reference data in the SEED, the concerned MSA may request the SEED for all or part of the update information in order to obtain an up-to-date Reference Data database.

Specifically, the MSA concerned with the inconsistency of its Reference data prepares a request message IE701: C_REQ_SUB. The IE701 message shall always specify a date range, an operation value (‘Retrieve’ or ‘Extraction’) signifying whether a retrieval or extraction shall be performed and optionally the requested list of codes. However, if no requested list of codes is specified, all EMCS reference data types defined by C_RDD_DAT (IE734) will be included in the response message (IE734).
[image: image110.emf] : MSA : MSA

 : System : SEED : System : SEED

1: IE701: C_REQ_SUB

2: IE734: C_RDD_DAT

Figure 102: Re-synchronisation of Reference data

Upon reception of the request message IE701, SEED will send a response message in the form of the IE734: C_RDD_DAT to the requesting MSA. The IE734 will contain the modifications of reference data for the period specified in the corresponding request message (IE701).

IV.II.2 Functional ways to get data

IV.II.2.1 Overview

The functionally different ways for a user to get the data from the repository are:

· Retrieval gets a set of modifications that have been applied to selected data types during a given time period (specified by begin and end date).

Please note that the increments that are mentioned in the previous paragraph are constituted by such modifications (retrievals).

· Extraction gets a set of Data Items, from selected data types, that are valid for a given time period (specified by begin and end date) or a part of that period.

· Acquisition of IE734 messages produced automatically and broadcasted by the SEED, every time the Common RD is modified as is specified in the paragraph IV.II.1.1 Dissemination of Reference Data (UC1.06).

· Queries get the set of Common Reference data entries that match one or more criteria given by the user.

IV.II.2.2 Retrieval

Retrieval allows the users to retrieve modifications made to the repository during a given time period. These modifications are returned as IE734: C_RDD_DAT messages.

For instance, if a user requests a retrieval of the Common RD data with a time range from the 10th September to the 15th September, he/she will in return receive the list of all the modifications to the Common RD entered between the 10th and the 15th of September.

It should be stressed that retrieval functionally is very different from extraction because the time range given for the retrieval does not relate to validity dates but to actual dates where the modifications were entered in the repository. For instance, it does not make any sense to perform retrieval for dates in the future.

A full retrieval means retrieving all the modifications to the Common RD since the database was set-up for the first time.

IV.II.2.3 Extraction

Extraction allows the users to extract the Common RD valid for a given period. This data is returned as IE734: C_RDD_DAT messages.

For instance, if a user requests an extraction of the Common RD for the period from the 10th to the 15th of September and a reference data entity is modified with a validity date of 13th of September, the extraction will provide the following information:

· It will give the value of the specific data entity, such as it is valid on the 10th September;

· It will also provide the modification that takes/took effect on the 13th September.

IV.II.2.4 Acquisition

Acquisition denotes the reception by a MSA of an IE734, which is disseminated automatically by the SEED. The specific functionality is explicitly described in paragraph IV.II.1.1 Dissemination of Reference Data (UC1.06).
IV.II.2.5 Queries

Queries allow the user to specify one or more criteria and receive as a result the set of data entries matching these criteria.

The criteria that can be used are:

· Data type;

· Date of validity;

· Value of one of the fields pertaining to a selected data type.

This functionality is covered by the interactive mode of access to SEED.

IV.II.3 Modes of access to SEED
IV.II.3.1 CCN/CSI Queue Based Mode

The exchange of IE734, IE732, IE710, and IE709 through CCN/CSI in queue-based mode shall be allowed during operations of EMCS in Phase 2. The protocol for queue-based exchanges of these Information Exchanges on CCN/CSI foresees the basic exchanges of these messages plus error reporting on them. Specifically, the error reports-messages generated are defined in Section IX.I.2.2.1:

In this access mode, the following operations are needed in case of the dissemination of Reference Data by the SEED:

· IE734 sending. SEED prepares the update message IE734: C_RDD_DAT that groups the changes of reference data to be applied by all MSAs. The IE734 which may include all or one of the following messages: IE732, IE710, and IE709, shall be sent to all NEA of MSAs which are connected to CCN/CSI through the CCN network.

In the case of the resynchronisation of Reference Data using the CCN/CSI queue based mode we have the following message exchanges:

· IE701 sending. The MSA concerned with the inconsistency of its Reference data prepares a request message IE701: C_REQ_SUB. The IE701 message which should always specify a date range and an operation value (‘Retrieve’ or ‘Extraction’) signifying whether a retrieval or extraction should be performed will be sent to the SEED through the CCN network.

· IE734 sending. As a response to the reception of the IE701, SEED will send the IE734: C_RDD_DAT containing the increment update of the reference data needed to the requesting MSA. The IE734 will contain the modifications of reference data for the period specified in the corresponding request message (IE701).
IV.II.3.2 Web Services (HTTP/S)

This chapter specifies the normal flow of messages exchanged between MSA and SEED to implement the information exchanges formatted as SOAP over CCN/HTTP (SOAP/HTTP). This mode of access is used for the communication between a MSA and SEED for the purpose of maintaining common reference data.

Resynchronisation of reference data is a process that may take a long time to complete. It is then necessary to manage long-lived conversations that span over multiple synchronous SOAP requests as explained in Section X Transport of Messages via SOAP/HTTP. The SOAP calls are synchronous but the execution of the command is asynchronous.

IV.II.3.2.1 Re-synchronisation of Reference data

A scenario of the flow of messages for the re-synchronisation of the local reference data of the MSA to the one kept by the SEED via asynchronous SOAP/HTTP is shown below. The conversation process is described after the figure.
[image: image111.emf] : MSACentralServices : MSACentralServices : System : SEED : System : SEED

1: IE701\startRetrievalOrExtract

2: startRetrievalOrResponse

3: [finishedProcessing]\SetActionCompleteToTrue

4: getRetrievalOrExtract

5: getRetrievalOrExtractResponse (actionComplete=true)

6: stopRetrievalOrExtract

7: stopRetrievalOrExtractResponse

Figure 103: Retrieve or Extract Entity Web Service
In order to submit a request, the MSA may interact with the ‘RetrieveOrExtractEntity’ web service, which exposes an asynchronous interface for this purpose.

A MSA starts an asynchronous conversation with the ‘RetrieveOrExtractEntity’ web service by invoking the ‘startRetrievalOrExtract’ operation with an instance of ‘startRetrievalOrExtract’ entity as parameter (in the body element of the SOAP message) and an IE701 as an attachment.
For example, inside the body of the SOAP message:
	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <StartHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </StartHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <startRetrievalOrExtract xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The MSA will also submit a unique conversationID that will be used for all subsequent requests to identify the requested action. Information regarding the conversationID and the details of the SOAP conversation is provided in Section X Transport of Messages via SOAP/HTTP. The ‘RetrieveOrExtractEntity’ web service sends upon reception an empty ‘startRetrievalOrResponse’ entity.

The web service might need a lot of time to prepare the requested data that should be sent to the MSA. The processing includes syntax and semantics validation.

During the processing time, the MSA can invoke at regular time intervals the ‘getRetrievalOrExtract’ operation.

For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <ContinueHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </ContinueHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <getRetrievalOrExtract xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The web service sends a ‘getRetrievalOrExtractResponse’ entity to the MSA.

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <getRetrievalOrExtractResponse xmlns="http://emcs.dgtaxud.ec/webservice/types">

 <ActionSucceeded>false</ActionSucceeded>

 </getRetrievalOrExtractResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

· If the ‘ActionSucceeded’ field value is a “false” Boolean value, the processing is not yet finished and the MSA must retry the call later;

· If the ‘ActionSucceeded’ field value is a “true” Boolean value, the processing is finished and the MSA must check if the “ActionResult” response field contains the ‘Error’ string. If there are no errors (‘ActionResult’ contains ‘Success’), the response contains an IE734 as an attachment with instances matching the criteria given in the submitted IE701.

For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

 <getRetrievalOrExtractResponse xmlns="http://emcs.dgtaxud.ec/webservice/types">

 <ActionSucceeded>true</ActionSucceeded>

 <ActionResult>Success</ActionResult>

 </getRetrievalOrExtractResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Finally, the MSA must terminate the conversation with a call to the ‘stopRetrievalOrExtract’ operation by sending a ‘stopRetrievalOrExtract’ entity.

For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <ContinueHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </ContinueHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <stopRetrievalOrExtract xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SEED frees all its internal resources locked by the conversation and returns immediately an empty ‘stopRetrievalOrExtractResponse’ entity.

For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <stopRetrievalOrExtractResponse xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

IV.II.3.2.1.1 Error Management

All SOAP/HTTP exchanges between a MSA and SEED share the same basic error management. Upon reception of a syntactically or semantically incorrect message (SOAP message), the web service notifies the application of the syntax or semantic error by sending a SOAP Fault message, which details the reason for rejecting the message. This message contains both the reason for the rejection and the location in the original message of the element that caused the error.

It must be stressed that if there is an error (no compliance with the format or rules and conditions of IE701) in the received instance of IE701, then the web service does not send a SOAP Fault message, instead an IE702 or an IE917 is sent in the ‘Error’ entity returned by a ‘getActionStatus’ operation.

SOAP Faults are further explained in Section X Transport of Messages via SOAP/HTTP.

IV.II.3.3 Interactive mode

The Interactive mode of access will be implemented via accessing the SEED on the web. It shall allow all users to perform "extraction" and/or "retrieval" of data as well as to make queries on the database via the GUI. Moreover, it shall allow users having the appropriate access rights (CD.Data Administrator) to prepare and upload the CD Reference Data modifications via the GUI. The HTTPS protocol is used.

Sub-Section IV.III Exchange of SEED data

IV.III.1 Introduction

IV.III.1.1 The Role of SEED data

SEED information includes all items that are described in Article 22 of Council Regulation (EC) No 2073/2004, namely:

· authorised warehouse keepers (as defined in Directive 92/12/EEC);

· registered Consignees (as defined in Directive 92/12/EEC);

· other registered operators that a MSA may allow to provide a movement guarantee in place of the Consignor; they may be considered as "persons who have assumed the obligations within the meaning of Article 15(3) of Directive 92/12/EEC" as stated in Council Regulation 2073/2004;

· Temporary authorisations. The temporary authorisations granted by a MSA of destination to a non-registered Consignee (as defined in Directive 92/12/EEC) are also included in SEED. A temporary authorisation can cover one or several movements. In both cases, a temporary authorisation can only concern one consignor and one Consignee for a given period of validity.
It should be stressed that the register of the SEED information will have the following content:

· the identification number issued by the competent authority regarding the person or premises (also known as the "Excise number");

· the name and address of the person or premises;

· the category of excise products which may be held or received by the person or which may be held or received at these premises;

· identification of the central liaison office or the excise office from which further information may be obtained;

· the date of issue, amendment and where applicable, the date of cessation of validity of the authorisation.

In addition to the above-mentioned information which is part of the SEED register, it should be mentioned that other relevant information such as specific authorisations (i.e. the allowance to practise direct delivery or to send energy products without identified destination under Article 15.6 of Directive 92/12/EEC) is contained in the register as well

Last but not least, temporary authorisations granted by a MSA of destination to a non-registered Consignee (as defined in Directive 92/12/EEC) are also part of the SEED information. A temporary authorisation can cover one or several movements. In both cases, a temporary authorisation can only concern one Consignor and one Consignee for a given period of validity.

It should be mentioned that the main purpose of the usage of the SEED information is the formal validation of the e-AAD and of all related submissions.

IV.III.1.2 Dissemination of SEED data (UC1.14)
The maintenance and dissemination of the SEED data is of great importance to the SEED application. The registration information of the economic operators must be in all cases accurate and up-to-date, which means that the distribution of changes on these data is critical. A MSA should submit its updates of SEED data a sufficient time in advance from the date where they become applicable so that they are ready for use in all Member States by that date. Due to the fact that this may not be always possible, for instance in case of immediate withdrawal of an authorisation, the MSA is invited to submit the update as soon as possible. Thus, each MSA is responsible for providing any changes of its register of economic operators to all other MSAs in due time. For consistency purposes, economic operator changes from each MSA are concentrated and consolidated in the common reference version of SEED maintained by the Common Domain Central Services-SEED. As stated above, the SEED data should be submitted to the SEED application at a sufficient time in advance from the date where the data become applicable, which is typically one or two opening days. The SEED application is responsible for the dissemination of the register updates to all Member States. Specifically, an agent in the MSA Central Services sends the set of update records to SEED application at the Common Domain Central Services (SEED) in the form of an IE713: C_QRO_DAT message.

[image: image112.wmf] : MSA Central Services

 : MSA Central Services

 : System: SEED

 : System: SEED

1: IE713:C_QRO_DAT

Figure 104: Dissemination of SEED data from MSA Central Services to SEED

After receiving this message, SEED performs a formal validation in connection with pre-existing information.

In particular:
· Validate message against the applicable DDNEA rules and conditions;

· Validate that the entities are created/updated/invalidated only by the owner MSA;

· Validate relationships between dates. (The start date of an excise authorisation must precede the date when the authorisation expires. The activation date should be at least the next of the modification date. The end date of an excise authorisation can be left unspecified (‘until to further notice’).

If the changes are found to be invalid, the SEED application at the Common Domain Central Services will reply with the transmission of an IE714: C_QRO_REF message signifying a refusal of update of economic operators and thus the submitted update will be completely rejected. The refusal of update for the economic operator register is depicted in the figure below:
[image: image113.wmf] : MSA Central Services

 : MSA Central Services

 : System: SEED

 : System: SEED

1: IE713:C_QRO_DAT

2: IE714:C_QRO_REF

Figure 105: Dissemination of SEED data where refusal of economic operators update occurs

On the other hand, if after the validation process the submitted update is accepted, the SEED application will prepare a unique consolidated message (IE713) containing all the validated updates related to the economic operators.

The unique consolidated update message is composed of all updates submitted by the MSAs and validated by the Common Domain Central Services, under the form of actions such as Create, Update or Invalidate from the preceding state of the register. The frequency of the updates is controlled by a set of local parameters and conditions managed by the Common Domain Central Services (for example when a certain number of modifications is reached or during pre-agreed time slices, etc.). The maximum time allowed between updates is a local parameter managed by the Common Domain Central Services (typically, one day). All Member States are committed to use the state of information received back from the Common Domain to update their National SEED register. The NDEA is responsible for applying the consolidated updates (IE713: C_QRO_DAT) received from SEED.

The frequency of consolidated message submission is configurable at the Central Services level. Currently, this has been specified in FESS [A1] per day. However, this is a subject for discussion in FESS.
The number of entities contained in the consolidated updates (IE713: C_QRO_DAT) that each NDEA receives is configurable via the SEED web interface. Each MSA may specify a number between 1,000 and 10,000 as the upper limit of entities to be contained in the consolidated messages (IE713) sent by SEED. If a consolidated message (IE713) to be disseminated exceeds the upper limit set by a MSA, SEED will split the consolidated updates and send multiple IE713: C_QRO_DAT messages so that no message exceeds the upper limit while ensuring that all updates are sent. If a MSA wishes to receive consolidated messages (IE713) without an upper limit, it may access the SEED web interface and set the upper limit to ‘null’. More information concerning the maintenance of SEED dissemination profiles can be found in SEEDv1 SRD [R11].
[image: image114.wmf] : System: SEED

 : System: SEED

 : MSA

 : MSA

1: IE713:C_QRO_DAT

All MSAs

Consolidated IE713

containing all the

validated updates of

the SEED data

received from each

MSA

Figure 106: Dissemination of SEED data where update of economic operators is accepted

IV.III.1.3 Re-synchronisation of SEED data (UC1.16)
There may be cases where the SEED database of the MSAs is found to be unsynchronised with the reference version maintained by the Common Domain. In such a case the re-synchronisation of SEED data is required, and the concerned MSA may request the Common Domain Central Services for all or part of the update information in order to obtain an up-to-date SEED database. This is performed by sending a request massage IE701: C_REQ_SUB which should always specify a date range and an operation value (‘Retrieve’ or ‘Extraction’) signifying whether a retrieval or extraction should performed. Upon reception of the IE701 message, the SEED application maintained by the Common Domain Central Services, will construct the IE713: C_QRO_DAT message which will contain the updates of the SEED data requested by the concerned MSA.

The IE713 message constructed by the SEED application in the Common Domain Central Services will be send to the concerned MSA.

[image: image115.wmf] : MSA Central Services

 : MSA Central Services

 : System: SEED

 : System: SEED

1: IE701:C_REQ_SUB

2: IE713:C_QRO_DAT

Figure 107: Re-synchronisation of SEED data

IV.III.2 Functional ways to get data

IV.III.2.1 Overview

The functionally different ways for a user to get the data from the SEED repository are:

· Retrieval gets a set of modifications that have been applied to selected data types during a given time period (specified by begin and end date).

Please note that the increments that are mentioned in the previous paragraph are constituted by such modifications (retrievals).

· Extraction gets a set of Data Items, from selected data types, that are valid for a given time period (specified by begin and end date) or a part of that period.

· Acquisition of IE713 messages produced automatically and broadcasted by the SEED, every time the SEED data is modified as is specified in the paragraph IV.III.1.2 Dissemination of SEED data.

· Queries get the set of Common Reference data entries that match one or more criteria given by the user.

IV.III.2.2 Retrieval

Retrieval allows the users to retrieve modifications made to the repository during a given time period. These modifications are returned as IE713: C_QRO_DAT messages.

For instance, if a user requests a retrieval of the SEED data with a time range from the 10th September to the 15th September, he/she will in return receive the list of all the modifications to the SEED entered between the 10th September and the 15th September.

It should be stressed that retrieval functionally is very different from extraction because the time range given for the retrieval does not relate to validity dates but to actual dates where the modifications were entered in the repository. For instance, it does not make any sense to perform retrieval for dates in the future.

A full retrieval means retrieving all the modifications to the SEED data since the database was set-up for the first time.

IV.III.2.3 Extraction

Extraction allows the users to extract the SEED data valid for a given period. This data is returned as IE713: C_QRO_DAT messages.

For instance, if a user requests an extraction of the SEED data for the period from the 10th September to the 15th September and a SEED data entity is modified with a validity date of 13th September, the extraction will provide the following information:

· It will give the value of the specific data entity, such as it is valid on the 10th September;

· It will also provide the modification that takes/took effect on the 13th September.

IV.III.2.4 Acquisition

Acquisition denotes the reception by a MSA of an IE713: C_QRO_DAT sent automatically by the system as is specified in the paragraph IV.III.1.2 Dissemination of SEED data (UC1.14).

IV.III.2.5 Queries

Queries allow the user to specify one or more criteria and receive as a result the set of data entries matching these criteria.

Some indicative criteria can be the following:

· the excise authorisation;

· Authorisation Begin Date;

· Authorisation End Date;

· Operator type, etc.

This functionality is covered by the interactive mode of access to SEED.

IV.III.3 Modes of access to SEED

IV.III.3.1 CCN/CSI Queue Based Mode

The exchange of IE713, IE714 and IE701 through CCN/CSI in queue-based mode shall be allowed during operations of EMCS in Phase 2. The protocol for queue-based exchanges of these Information Exchanges on CCN/CSI foresees the basic exchanges of these messages plus error reporting on them. Specifically, the error reports-messages generated are defined in Section IX.I.2.2.1.
In this access mode, the following operations are needed in case of the dissemination of SEED data by the SEED system:

· IE713 sending. An agent in the MSA Central Services sends the set of update records to the SEED application at the Common Domain Central Services in the form of an IE713: C_QRO_DAT message through the CCN network.
The received IE713 message will be put under formal validation in comparison to pre-existing information.

· IE714 sending. In the case that an IE713 submitted from a MSA is found to be invalid, the SEED application will completely reject the submitted change and produce a refusal of update of economic operators message IE714 that will be transmitted to the NEA of the concerned MSA connected to CCN/CSI through the CCN network.

· IE713 sending. Upon acceptance of the validated IE713 sent by the concerned MSA, the SEED application inserts the validated updates into the increment of the register of economic operators currently under preparation. The increment is composed of all validated updates submitted by the MSAs. Based on a predefined size and a maximum time elapsed between two updates, the consolidated incremental update IE713 is disseminated to the NEA of all MSAs through the CCN network.

In the case of the resynchronisation of SEED data using the CCN/CSI queue based mode we have the below message exchanges:

· IE701 sending. The MSA concerned with the consistency of its SEED data prepares a request message IE701: C_REQ_SUB. The IE701 message which should always specify a date range and an operation value (‘Retrieve’ or ‘Extraction’) signifying whether a retrieval or extraction should performed will be send to the Common Domain Central Services (SEED) through the CCN network.

· IE713 sending. As a response to the reception of the IE701, SEED will send the IE713: C_QRO_DAT containing the increment update of the SEED data needed by the requesting MSA.

IV.III.3.2 Web Services (HTTP/S)

This chapter specifies the normal flow of messages exchanged between MSA and SEED to implement the information exchanges formatted as SOAP over CCN/HTTP (SOAP/HTTP). This mode of access is used for the communication between a MSA and SEED with the purpose of maintaining SEED data.

Dissemination and Resynchronisation of SEED data are processes that may take a long time to be completed. It is then necessary to manage long-lived conversations that span over multiple synchronous SOAP requests as explained in Section X Transport of Messages via SOAP/HTTP. The SOAP calls are synchronous but the execution of the command is asynchronous.

IV.III.3.2.1 Dissemination of SEED data (Reception of Updates from the MSAs)

A scenario of the flow of messages for the disseminating SEED data from a MSA to the Common Domain SEED via asynchronous SOAP/HTTP is shown below (in essence only the reception of the incremental updates sent by the MSAs is depicted, since the actual dissemination only occurs through CCN/CSI communication channel). The conversation process is described after the figure:
[image: image116.emf] : MSA Central Services : MSA Central Services

 : CD Central Services : CD Central Services

1: IE713\startEntityAction

2: startEntityActionResponse

3: getEntityActionResult

4: getEntityActionResultResponse (actionCompleted=false)

8: stopEntityAction

9: stopEntityActionResponse

6: getEntityActionResult

7: getEntityActionResultResponse (actionCompleted=true)

5: [finishedProcessing]\SetActionCompletedToTrue

Figure 108: Maintain Entity Web Service

In order to submit update information regarding the economic operators, the MSA may interact with the ‘MaintainEntity’ web service that exposes an asynchronous interface for this purpose.

A MSA starts an asynchronous conversation with the ‘MaintainEntity’ web service by invoking the ‘startEntityAction’ operation with an instance of ‘startEntityAction’ entity as parameter (in the body element of the SOAP message). The request contains an instance of an IE713 (C_CRO_DAT) as an attachment.

For example, the SOAP message should be structure like:
	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <StartHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </StartHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <startEntityAction xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The MSA will also submit a unique conversationID that will be used for all subsequent requests to identify the requested action. Information regarding the conversationID and the details of the SOAP conversation is provided in Section X Transport of Messages via SOAP/HTTP. The ‘MaintainEntity’ web service sends upon reception an empty ‘startActionResponse’ entity.

The web service might need a lot of time to process the validity of an IE713 message. The processing includes syntax and semantics validation and validation of the submitted information in connection with pre-existing information in SEED.

During the processing time, the MSA can invoke at regular time intervals the ‘getEntityActionResult’ operation by sending a ‘getEntityActionResult’ entity. For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <ContinueHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </ContinueHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <getEntityActionResult xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The web service checks if the action has been completed and sends accordingly a ‘getActionStatusResponse’ entity to the MSA. For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 < getEntityActionResultResponse xmlns="http://emcs.dgtaxud.ec/webservice/types">

 <ActionSucceeded>false</ActionSucceeded>

 </getEntityActionResultResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

· If the ‘ActionSucceeded’ field value is a “false” Boolean value, the processing is not yet finished and the MSA must retry the call later;

· If the ‘ActionSucceeded’ field value is a “true” Boolean value, the processing is finished and the MSA must check if the response contains an ‘Error’ entity of type ‘EntityErrorType’. If there are no errors, the processing of all the actions in IE713 was successful.

Finally, the MSA must terminate the conversation with a call to the ‘stopEntityAction’ operation by sending a ‘stopEntityAction’ entity. For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <ContinueHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </ContinueHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <stopEntityAction xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SEED frees all its internal resources locked by the conversation and returns immediately an empty ‘stopEntityActionResponse’ entity. For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <stopEntityActionResponse xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The submitted instance of IE713 (if the validation has been completed successfully) will be consolidated in an incremental update (probably along with other submitted instances of IE713) and sent at some later time by the Common Domain Central Services to all MSAs using the CCN/CSI or the CCN Mail 2.

IV.III.3.2.1.1 Rejection of Update

In addition to standard error management, SEED may be unable to process the asynchronous request for update because the modifications might violate the data integrity of the central repository. The normal flow of messages for rejection via asynchronous SOAP/HTTP is shown below:

[image: image117.png]N

1+ BT stanEnteyetion

2 sanEncieyActionResponse

4 gerEntiyActionResult

| & LactonFaiedlrsrurmEror

e

& stopEneyction

[The response includes a5
Sexachment an mstanca of
{ | Eria o ES1T

depanding of the arror

Figure 109: Maintain Entity Web Service (Rejection of Updates)

The main difference from the scenario where the submitted update (IE713) has been accepted is the response of the ‘getEntityActionResult’ operation. When the web service finds an error during the validation of the submitted update sends an instance of IE714 or IE917 as an attachment to the response message.

For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

 <getEntityActionResultResponse xmlns="http://emcs.dgtaxud.ec/webservice/types">

 <ActionSucceeded>true</ActionSucceeded>

 <ActionResult>Error</ActionResult>

 </getEntityActionResultResponse >

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The IE714 and IE917 messages are sent when the submitted instance of IE713 does not comply with the syntax and semantics rules of the IE713.

Finally, the MSA must terminate the conversation with a call to the ‘terminateAction’ operation by sending a ‘terminateAction’ entity.

IV.III.3.2.1.2 Error Management

All SOAP/HTTP exchanges between a MSA and SEED share the same basic error management. Upon reception of a syntactically or semantically incorrect message (SOAP message), SEED notifies the application of the syntax or semantic error by sending a SOAP Fault message, which details the reason for rejecting the message. This message contains both the reason for the rejection and the location in the original message of the element that caused the error.

It must be stressed that if there is an error (no compliance with its format or rules and conditions of IE713) in the received instance of IE713, then SEED sends an IE714 or an IE917 as described in the previous paragraph and not a SOAP Fault message.

SOAP Faults are further explained in Section X Transport of Messages via SOAP/HTTP.

IV.III.3.2.2 Re-synchronisation of SEED data

The normal flow of messages for re-synchronisation of the local registry of the MSA to the one kept by the Common Domain Central Services via asynchronous SOAP/HTTP is shown below:

[image: image118.emf] : MSA Central Services : MSA Central Services

 : System: SEED : System: SEED

1: IE701\startRetrievalOrExtract

2: startRetrievalOrExtractResponse

3: getRetrievalOrExtract

4: getRetrievalOrExtractResponse (actionCompleted=false)

7: stopRetrievalOrExtract

8: stopRetrievalOrExtractResponse

5: getRetrievalOrExtract

6: getRetrievalOrExtractResponse (actionCompleted=true)

The response includes

an IE713 with

instances of SEED

data that satisfy the

specified criteria. If no

entries meet the

specified criteria, then

the response contains

an empty IE...

Figure 110: Retrieve or Extract Entity Web Service
In order to submit a request update of register of economic operators, the MSA may interact with the ‘RetrieveOrExtractEntity’ web service which exposes an asynchronous interface for this purpose.

A MSA starts an asynchronous conversation with the ‘RetrieveOrExtractEntity’ web service by invoking the ‘startRetrievalOrExtract’ operation with an instance of the ‘startRetrievalOrExtract’ entity as parameter in the body element of the SOAP message and an IE701 (C_REQ_SUB) as attachment.
For example, inside the body of the SOAP message:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <StartHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </StartHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <startRetrievalOrExtract xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The MSA will also submit a unique conversationID that will be used for all subsequent requests to identify the requested action. Information regarding the conversationID and the details of the SOAP conversation is provided in Section X Transport of Messages via SOAP/HTTP. The ‘RetrieveOrExtractEntity’ web service sends upon reception an empty ‘startRetrievalOrExtractResponse’ entity.

The web service might need a lot of time to prepare the registration data that should be sent to the MSA. The processing first includes syntax and semantics validation.

During the processing time, the MSA can invoke at regular time intervals the ‘getRetrievalOrExtract’ operation by sending a ‘getRetrievalOrExtract’ entity.
For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <ContinueHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </ContinueHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <getRetrievalOrExtract xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The web service sends a ‘getRetrievalOrExtractResponse’ entity to the MSA.

For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <getRetrievalOrExtractResponse xmlns="http://emcs.dgtaxud.ec/webservice/types">

 <ActionSucceeded>false</ActionSucceeded>

 </getRetrievalOrExtractResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

· If the ‘ActionSucceeded’ field value is a “false” Boolean value, the processing is not yet finished and the MSA must retry the call later;

· If the ‘ActionSucceeded’ field value is a “true” Boolean value, the processing is finished and the MSA must check if the ‘ActionResult’ field contains the ‘Error’ string. If there are no errors (‘ActionResult’ field contains ‘Success’), the ‘Success’ entity of type ‘EntityActionSuccessType’ contains a sequence of IE713 responses matching the criteria given in the submitted IE701. If there are no matching increments to be sent, an empty instance of IE713 is conveyed as an attachment.

For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

 <getRetrievalOrExtractResponse xmlns="http://emcs.dgtaxud.ec/webservice/types">

 <ActionSucceeded>true</ActionSucceeded>

 <ActionResult>Success</ActionResult>

 </getRetrievalOrExtractResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Finally, the MSA must terminate the conversation with a call to the ‘stopRetrievalOrExtract’ operation by sending a ‘stopRetrievalOrExtract’ entity.

For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <ContinueHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </ContinueHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <stopRetrievalOrExtract xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

SEED frees all its internal resources locked by the conversation and returns immediately an empty ‘stopRetrievalOrExtractResponse’ entity.

For example:

	<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header/>

 <SOAP-ENV:Body>

 <stopRetrievalOrExtractResponse xmlns="http://emcs.dgtaxud.ec/webservice/types"/>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

IV.III.3.2.2.1 Error Management

All SOAP/HTTP exchanges between a MSA and Central Services share the same basic error management. Upon reception of a syntactically or semantically incorrect message (SOAP message), the web service notifies the application of the syntax or semantic error by sending a SOAP Fault message, which details the reason for rejecting the message. This message contains both the reason for the rejection and the location in the original message of the element that caused the error.

It must be stressed that if there is an error (no compliance with the format or rules and conditions of IE701) in the received instance of IE701, then the web service does not send a SOAP Fault message, instead an IE702 or an IE917 is sent in the ‘Error’ entity returned by a ‘getRetrievalOrExtract’ operation.

SOAP Faults are further explained in Section X Transport of Messages via SOAP/HTTP.

IV.III.3.2.2.2 Interactive Mode

The Interactive mode of access will be implemented via accessing the SEED on the web. It shall allow all users to perform "extraction" and/or "retrieval" of SEED data as well as to make queries on the database via the GUI. Moreover, it will allow users with the appropriate access rights (ND Data Administrators) to prepare and upload the SEED Data modifications via a GUI as a fallback procedure. It relies on the HTTPS protocol.

Section V System Administration

The procedures and tools (i.e. archiving procedures, configuration management, version control, data management, fallback procedures, problem tracking and audit trail) used for system administration are a national matter and consequently do not concern other MSAs.

NDEAs need to keep a log of exchange information, for relating an error to the information that has been exchanged and to solve any disputes regarding exchanged information. This log needs to contain:

· The content of the messages that have been exchanged (either sent or received), thus including all steering information specified by the Data Group MESSAGE (see Section VII: Design Principles), e.g. ARC, Correlation identification, message reference and the functional message type;

· A timestamp showing at which date and time the Information Exchange (IE) has been prepared for sending or has been received;

· The result of application processing of the message, including all detected errors and any state change triggered by the message. If any error has been detected, the message will be viewed as not being processed by a national excise administrator;

· The name of the queue to which the message has been submitted;

· A timestamp showing the date and time at which the Information Exchange (IE) message has been exchanged through CCN. At reception, the timestamp is the date and time of receiving the Information Exchange (IE). At sending it is date and time of delivering the message to the CCN Gateway of the sending National Excise Application;

· The CSI header for the particular message. The structure of the CSI header is for instance given in the CCN/CSI Common Definition Reference Manual (C language, jCSI);

· The status of the exchange of the Information Exchange (IE) interchange across CCN (i.e. the reception of a Confirm On Delivery and its related timestamp).

Section VI Technical Message Structure

VI.I.1 Introduction

In this section the basic elements of the EMCS Technical Message Structure, namely data groups, data items and codelists, are described.

VI.I.2 Data dictionary

VI.I.2.1 Data Items

The different Data Items that are part of EMCS are listed in Appendix G. Every Data Item is identified by a unique name. The naming conventions are listed in Section I of this document. To be noted is that every name will in principle contain some lowercase characters, except for the following:

· Trader ID;

· NAD LNG.

Every Data Item has an associated type (which can be numeric, alphanumeric or decimal) and in some cases a Data Item can have only discrete values, in which case the Data Item is said to have an associated codelist.

In some cases, there may be some deviations between names at the corresponding FESS [A1], and DDNEA level. The reasons for this are discussed later in this document.

It shall be noted that there are two categories of free text fields within EMCS:

· Fields with an associated language code (LNG field). This LNG field may contain the code of the language in which the text was originally written;

· Fields without such language code.

VI.I.2.2 Data Groups

The different Data Groups being part of EMCS are listed in Appendix F.

Every Data Group consists of a number of Data Items in a particular order. Every message is composed of a certain number of Data Groups in a particular hierarchy. Every Data Group is identified by a name. To be noted is that group names are not unique. It may thus very well happen that the same group name is found in different messages. Moreover, Data Groups with the same name do not always include the same Data Items. Hence, when a Data Group is used in more than one place including different Data Items each time, then this Data Group should be assigned to all of these Data Items even if not all of the Data Items are used in every instance.

Later on, with the message definition, the Data Items which are to be included for a particular group or not are specified.

Every Data Item within a group also has a unique identifier. The unique identifiers have been chosen more or less arbitrarily.

To be noted is that some Data Groups may not always have the same Data Item sequence in different messages.

Later on, with the message definition, the exact sequence of data elements in a particular group is specified.

VI.I.2.3 Codelists

A codelist is a set of discrete values, with an associated meaning. Codelists are included in Appendix B.

A name and a number identify codelists. Codelists are maintained by the SEED. The Central Project Team, supported by the Legal and Procedural team, will maintain the business codelists on the central reference site. The MSAs can then download the new codelists from this reference site.

There are a number of technical codelists for which the values are predefined and fixed. These values are not maintained within the common reference data. These codelists are marked as technical codelists in Appendix B.

VI.I.3 Technical message structure

The structure and format of the different Information Exchanges are included in the corresponding Appendix D. These appendices contain a message format description for every Information Exchange that is part of the particular system.

The technical message description is supplied in two parts.

The first part is the overall message description. This description contains the overall layout of the messages. It defines the different Data Groups that are part of the message, the sequence of the groups, the level of hierarchy of the Data Groups, the optionality of the Data Group, the possible repeat count, and associated rules and conditions. Concerning the optionality, it should be noted that the following rules apply:

· If a Data Group is always required, it is marked as “R”;

· If there exist one or more conditions related to the presence of the Data Group, it is marked as ‘D’. When a condition indicates that a dependent data group “does not apply” in a specified case then the specific data group must not be present in the message structure;

· If a Data Group is not always required and there are no conditions related to its presence, it is marked as ‘O’, meaning that the Data Group may either be present in the message structure or not. However, if information is available it is recommended to be included in the message despite the fact that this Data Group is characterised as Optional.

In order to go down one level in the hierarchy, the Data Group at the higher level in the hierarchy needs to be present. The second part of the TMS contains the description of the different Data Items. This description includes the sequence of the data elements in the group, the optionality, and the associated rules and conditions.

Concerning the optionality of the Data Items, the following rules apply:

· If a Data Item is always required, it is marked as “R”;

· If there exist one or more conditions related to the presence of the Data Item, it is marked as ‘D’. When a condition indicates that a dependent data item “does not apply” in a specified case, then the specific data item must not be present in the message structure. It shall be noted that a Data Item set to “NULL” (empty valued) is still present in the message structure. Hence, when a Data Item is marked as “does not apply” in a specific case, the generated messages shall not include it with a “NULL” value. Subsequently, when all Data Items of a Data Group are set to “NULL”, the Data Group is still present in the message structure. Hence, when a Data Group is marked as “does not apply” in a specific case, it shall not be present in the generated messages with all of its Data Items set to “NULL”.

· If there are no conditions related to the presence of a particular Data Item, it is marked as ‘O’, meaning that the Data Group may either be present in the message structure or not. However, if information is available it is recommended to be included in the message despite the fact that this Data Group is characterised as optional.

The rules and conditions of FESS, Appendix D [A1] have been copied and marked as RXXX and CYYY. However, those Rules that include constant values or refer to the business entities (FESS, Appendix B: List of codes) have been replaced by technical and business codelists in DDNEA, Appendix B. Moreover, when data is derived from another message, the rules and conditions are implicitly carried forward.

The message description part of this document consists of message hierarchies and correlation tables in order to map the Information Exchanges to those hierarchies (XML).

The mapping between the optionality codes used for the Data Groups and Data Items in the FMS of FESS [A1] and the ones used in the DDNEA is shown below:
	Status description
	FESS status code
	DDNEA status code

	Required/mandatory
	R
	R

	Optional
	O
	O

	Conditional /Dependent
	C
	D

Table 11: Use of status codes

The abbreviations stand for Required, Optional, Conditional/Dependent. The DDNEA optionality codes are used in the Correlation tables of Appendix C and in the TMS of Appendix D.

It should be noted that the Data Items are characterised as “Dependent” in the DDNEA instead of “Conditional”, as FESS does, since it is more accurate representation of the relationship between the elements and their values. This is due to the fact that not only Conditions but also Rules and Technical Rules can also be applied to these Data Items. Therefore, the letter “D” illustrates precisely the dependency on different entities. An indicative example extracted from Appendix D of the DDNEA is the following:

The Data Item (DELIVERY PLACE) TRADER. Trader ID is dependent (D) since both the C074 and R045 are applied to it. According to C074, the presentation of this Data Item (if it is “Required” or not) is dependent on the DESTINATION TYPE CODE value. Moreover, according to R045, the content of this field (if it will be the excise number, the temporary authorisation, VAT number, etc.) is dependent on the DESTINATION TYPE CODE.

VI.I.4 Common Message Header

The “Message Header" is common for all messages and consists of the following Data Items:

· Message sender and Message recipient: The Data Items "Message sender" and "Message recipient" are both “Required” and should contain, respectively, the address of the sender and recipient, defined as:

<Application Name>.<Member State Code>, where:

· <Application Name> equals:

· for NDEAs, the value “NDEA”;

· for SEED, the value “SEED”;

· <Member State Code> equals:

· for NDEAs, the respective “Member State Code” value from the Member State Codes Business Codelist (see FESS [A1]);
· for SEED, the value “EC”;

· Date of preparation: This is a “Required” Data Item used for the date that the Information Exchange was put into XML representation (generation of the XML message);

· Time of preparation: This is a “Required” Data Item used for the exact time that the Information Exchange was put into XML representation (generation of the XML message);

· Message identifier: This is a “Required” Data Item generated by the sending application to uniquely identify the information exchange;

· Correlation identifier: This is a “Dependent” Data Item, since it is only Required for correlating the response and refusal messages. It does not apply for requests and one way messages.

VI.I.5 DDNEA consistency

The Information Exchanges are aligned with the FESS (Appendix D).
As a general overview, the major changes between DDNEA TMS and FESS FMS are:

· Changes in the naming conventions, some names have been changed between DDNEA and FESS [A1];

· Expansion of Information Exchanges inside other Information Exchanges: FESS [A1] presents some messages inside messages. In DDNEA, the content of the sub-messages has been put in the master-message;

· Message group: This data-group is added in every message;

· Implementation of FMS conditions and rules;

· Technical Rules and Conditions.

Section VII Design Principles

This section defines a number of design principles for the NDEAs that are common regardless the transportation mechanism (CCN/CSI or SOAP/HTTP).

VII.I.1 Approach

Every Information Exchange needs to be in a structure that conforms the TMS structure in Section VI - Technical Message Structure. The TMS needs to be formatted in XML format, as specified within this document in Section VIII - XML formatting.

The formatted message needs to be transported across CCN/CSI and across SOAP/HTTP according to the rules laid out in this document (Section IX - Transport of Messages via CCN/CSI and Section X - Transport of Messages via SOAP/HTTP).

This applies only to mandatory exchanges. For the (strongly) recommended exchanges, it is highly advised to use similar conventions and rules.

Due to the fact that Information Exchanges are used to update data of Excise operations held by different applications, not all data is uniquely identifiable, and therefore, the following rules are applied for the updating of operation data:

· Key fields: The ARC is a key to uniquely identify EMCS operations. It is unique and it refers to EMCS movements. Each e-AAD body is uniquely identified by its “Body Record Unique Reference” number within an ARC;

VII.I.2 Character Sets and Data Item Conventions

Every MSA may maintain locally different character set(s) and Data Item conventions. These have usually been selected in order to best fit the MSA’s business needs. Excise does not impose any standards concerning national usage of character sets or Data Item conventions. However, they impose some standards for the Data Items (see VII.I.2.1.1 Data Item conventions) and the character sets (see VII.I.2.1.2 Character set usage) when information is exchanged in the Common Domain.

Every MSA should therefore foresee character set conversion and Data Item conversion when information is exchanged across the Common Domain.

 SHAPE * MERGEFORMAT

Figure 111: Character sets and conventions in use

The Common Domain standards are given below. Recommendations for National Domain exchanges are given next.

VII.I.2.1 Common Domain exchanges

VII.I.2.1.1 Data Item conventions

Every Data Item within a TMS can be numeric, alphanumeric, text field, dateTime, date, or time. A number of rules and conventions have been defined for the possible data formats when present in the Common Domain. These rules are the same for data exchanged in XML format.

VII.I.2.1.1.1 Numerical Fields

Concerning numerical fields, it should be noted that these contain either a cardinal value (positive integer value) or a decimal value.

The decimal separator is the decimal point “.”. No other symbols are permitted as decimal separator.

Triad separators, such as a comma, shall not be used.

Signs, whether positive or negative, shall not be used (all values are always intrinsically positive).

For decimal values, the decimal notation (with the decimal point) should only be used when there is a reason to indicate precision.

E.g., for a mass value:

· 89 kg, with a precision of 1 kg.

· 89.2 kg, with a precision of 0.1 kg.

· 89.20 kg, with a precision of 0.01 kg.

For numerical values, leading zeroes shall not be used. Trailing zeroes should only be used to indicate precision.

If the decimal point is present, at least one digit shall be present before the decimal point.

If the decimal point is present, at least one digit shall be present after the decimal point.

Examples for a n..11,3 type.

	12345678.123
	(Valid).

	123456789012.123
	(Invalid - too many digits before decimal point and hence too many digits in total).

	12345678.1234
	(Invalid - too many digits after decimal point and hence too many digits in total).

	0123
	(Invalid - leading zero not permitted).

	+123
	(Invalid - plus sign not allowed).

	-123
	(Invalid - minus sign not allowed).

	1,234
	(Invalid - triad separator not allowed).

	.3
	(Invalid - no digit before decimal point).

	12345.
	(Invalid - no digit after decimal point).

	0.3
	(Valid).

	1.3E1
	(Invalid - only digits and decimal point allowed).

	12345678901
	(Valid - n..11,3 can have maximally 11 digits of which maximally 3 after decimal points).

It is to be noted that the rules above also apply to numerical values within codelists. Values in such a list should always be stored without leading zeroes (in order to avoid problems of comparing e.g. a value of 60 against a value of 060). If the leading zeroes are omitted, a numerical comparison should always work out fine.

It should be noticed that there are no codelists with decimal values.

VII.I.2.1.1.2 Date/Time Fields

The specification of Date and/or Time fields used in TMS (Section VI and Appendix D) is as per W3C XML Schema specification [S15] except that:

· for all times in DateTime and Time fields time zone must be omitted with the local time always implied as being the Coordinated Universal Time (UTC, sometimes called "Greenwich Mean Time");

· all years in DateTime and Date fields are in the Common Era (i.e. AD), hence the negative sign is not permitted.

Although the reader should refer to the W3C XML Schema specification [S15], the following table (Table 12) indicates the format for each type and their corresponding regular expression.

	Type
	Regular Expression

	Date
	yyyy '-' MM '-' dd \d{4}-\d{2}-\d{2}

	Time
	hh ':' mm ':' ss ('.' s+)? \d{2}:\d{2}:\d{2}(\.\d+)?

	Date/Time
	yyyy '-' MM '-' dd 'T' hh ':' mm ':' ss ('.' s+)? \d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?

Table 12: Date/Time fields format and their corresponding regular expressions

Where:

· yyyy is a four-or-more digit;

· the remaining '-'s are separators between parts of the date portion;

· MM is a two-digit numeral that represents the month;

· dd is a two-digit numeral that represents the day;

· 'T' is a separator indicating that time-of-day follows;

· hh is a two-digit numeral that represents the hour; '24' is permitted if the minutes and seconds represented are zero, and the dateTime value so represented is the first instant of the following day (the hour property of a dateTime object in the ·value space· cannot have a value greater than 23);

· ':' is a separator between parts of the time-of-day portion;

· mm is a two-digit numeral that represents the minute;

· ss is a two-integer-digit numeral that represents the whole seconds;

· '.' s+ (if present) represents the fractional seconds.

VII.I.2.1.2 Character set usage

Messages exchanged in XML format shall use the UTF-8 encoding of UNICODE both for language sensitive fields and for non-language sensitive fields.

VII.I.2.1.3 Language Indicator for Language-sensitive text fields

The associated LNG indicator, if present, denotes the language in which the original text was written. From this, the character set used can be derived. All relevant information can be found in the Unicode Standard [S2].
VII.I.2.2 External Domain exchanges

It is highly recommended to use the standards defined above, to the maximum extent possible, in the External Domain.

VII.I.3 Exception Handling

VII.I.3.1 Introduction

Exceptions may occur in any message exchange between EMCS applications. In order to support the business processes defined in FESS [A1], the DDNEA defines how EMCS applications should handle exceptions occurring at the following message exchanges:

· NEA to NEA at the Common Domain;

· NEA to SEED at the Common Domain; and

· Economic Operator to NEA at the External Domain (exception handling at the External Domain should be considered as a recommendation subject to national adaptation).

The fallback and recovery procedures of these message exchanges are outside the scope of DDNEA. In principle, every action related to Information Exchanges needs to be logged to allow recovery and identification of a failed component. Relevant procedures are specified in FRS [A12].

It should be noted that refusal and rejection messages are two distinct categories of messages and should not be confused. All messages relevant to exception handling are refusal messages originating automatically from the EMCS applications denoting that processing of a received message has been refused. A message sender receiving a refusal message as a response to a message sent, should consider that message as non-processed by the receiver.

Rejection messages, on the other hand, are triggered by a business process and are described by the business scenarios. Rejection messages have corresponding state transitions and are not response messages. This section does not discuss rejection message since they are discussed in the business scenarios of the DDNEA.
VII.I.3.2 Exception hierarchy
The validations discussed in this section follow a hierarchy constituted by a number of layers (see Figure 112); each successive layer is more abstract than the previous layer. Each layer’s validations should pass successfully in order to proceed to the validations of the next layer. Depending on the layer at which an exception is raised, particular actions should be taken by the message receiver in order to inform the sender of the exception and the refusal to process the message.
The exception hierarchy consists of the following layers presented in the order that should be performed:

1. transport layer: for validations and errors during sending or receiving messages over the Common Domain (see VII.I.3.2.1);

2. syntactic layer: for validations of the message content for XML and XSD conformance (see VII.I.3.2.2);

3. semantic layer: for validations relating to the coordination protocol and business compliance (see VII.I.3.2.3).
[image: image120.png]Exception Handling

Semantic Layer

Coordination Protocol Business Compliance

Syntactic Layer

XML Formatting Message Structure.
(conventions conformance) | (XSD conformance)

Transport Layer

CceN/est SOAP/HTTP

Figure 112: Exception Hierarchy
VII.I.3.2.1 Transport layer
Exceptions occurring at the transport layer are basic exceptions that ultimately prohibit the receiver from retrieving the message sent by the sender. Depending on the transport being used, the exception handling is discussed in Section IX for CCN/CSI and Section X for SOAP/HTTP.

The validations of this layer are applicable to all Common Domain message exchanges. For the External Domain the validations of this layer are recommended, subject to the particular communication protocols used at national level.
VII.I.3.2.2 Syntactic layer
After reception of a message, the receiver ensures that the message content conforms to the XML format as specified in VII.I.2 Character Sets and Data Item Conventions. This layer also includes structural validation against the corresponding XSD defined in Appendix H (see also Section VIII XML formatting).

The validations of this layer are applicable to all Common Domain message exchanges. For the External Domain the validations of this layer are highly recommended subject to the particular national requirements. Although, syntactic validations are recommended in the External Domain rather than required, the scenarios in the DDNEA consider this validation to be performed.

The syntactic validation of messages is explicitly depicted in the scenario diagrams of the DDNEA with the “Validate Msg Structure ()” operation. The purpose of this operation is to ensure that the XML formatting and the message structure conform to the DDNEA specifications. The “Validate Msg Structure ()” operation occurring in the scenario diagrams, is considered to return successfully meaning that the message is syntactically correct.

A message receiver of a syntactically invalid message will not be able to process the message. The normal processing of the invalid message should be aborted and the processing refusal should be indicated to the message sender by dispatching a Negative Acknowledgement of XML Receipt message (IE917: C_XML_NCK) containing the detected error(s).

The message sender after reception of the IE917 message should not retransmit the same message before correcting the errors. Moreover, the message sender should consider the referenced message as non-processed by the receiver, thus no changes at the business level should occur for both the message sender and the message receiver.

The IE917 message contains the following information:

· The character line and column number of the error identifying the first position of the identified location of the error within the message.

· The Error Reason containing the text of the error for which no specific requirements are imposed.

· Optionally, the Error Location containing the XPath location of the error. For message with invalid XML content or if the reported error concerns XML conformance or formatting, the XPath location will, most probably, not be available in which case the Error Location needs not be included. Even for XML schema errors, this data item is optional as the sender’s application may not support this information. Moreover, it is recommended to avoid including the Error Location if the XPath string is to be truncated (i.e. if the length of the string is greater than the length of the relative Data Item), thus avoiding reporting inaccurate location.

· Optionally, the Original Attribute Value that should be used when the error is an XML schema error concerning an invalid value. The reasons for considering an attribute value invalid might be the format or a value outside the applicable technical Codelist. For such cases, the Original Attribute Value should contain the invalid value contained in the received message in order to indicate which value was perceived invalid.

For cases where the received message contains AAD Reference Code and Sequence Number and the information is readable (i.e. the XML content can be parsed), then the information should be included in the Negative Acknowledgement (IE917: C_XML_NCK) message to support correlation at the message sender’s side.

Message correlation with the use of AAD Reference Code and Sequence Number is a correlation used to support the business level while at application level a more robust mechanism exists with the use of Message Identifier and Correlation Identifier Data Items of the message header as defined in VI.I.4 Common Message Header.

The Correlation Identifier for all refusal messages in general, and the IE917 (C_XML_NCK) in particular, is a required Data Item that should contain the Message Identifier value of the message being refused. However, if the Message Identifier cannot be retrieved from the erroneous message, then the sender of the IE917 (C_XML_NCK) message should not include the Correlation Identifier Data Item.

VII.I.3.2.3 Semantic layer
After successful syntactic validation, the format and structure of the message have been secured and thus the receiver may continue processing at the business level. Two categories of validations should be performed at the semantic layer, namely coordination protocol validations and business compliance validations. The coordination protocol validations ensure that the received message is expected as part of the message exchange protocols defined in the business scenarios of the DDNEA. Finally, the business validations ensure the business rules compliance of the received message such that the relevant business processes will be executed without the occurrence of any exceptions.

Depending on the business communication channel through which a message is received, not all categories of validations are applicable. The applicability of the semantic layer validation categories that the receiver should perform per business communication channel is depicted in Table 13.

	
	Economic Operator to NEA
	NEA to NEA
	NEA to SEED

	Coordination protocol
	Recommended if applicable
	Mandatory
	Mandatory

	Business compliance
	Recommended
	Not applicable
	Mandatory

Table 13: Semantic layer validations applicability to business communication channels
The recipients of NEA to NEA message exchanges should perform only coordination protocol validations since it is assumed that a NEA sending a message to another NEA has validated successfully the business compliance validity of the messages before transmission.

It is required, therefore, for messages exchanged between NEAs to be valid. Towards achieving this requirement, it is highly recommended that NEAs perform business compliance validations when a message received from the Economic Operator to NEA business communication channel triggers a message transmission to another NEA through the Common Domain. The business compliance validation is explicitly depicted in the scenario diagrams of the DDNEA with the “Validate Msg Content ()” operation.

The “Validate Msg Content ()” operation is considered to return successfully, meaning that the message complies with all rules, conditions and functional requirements of the FESS [A1]. Again, this is subject to particular requirements at national level.

Finally, for NEA to SEED message exchanges, SEED will perform both categories of semantic validations.

Semantic errors are notified by different messages depending on the erroneous message. There are particular refusal messages for certain messages; for refusing an IE701, an IE702 is used (Sections III.I.1.4.2 General query to retrieve an e-AAD (UC2.52) and IV.II.1.2 Re-synchronisation of Reference Data (UC1.05)); for refusing an IE713, an IE714 is used (IV.III.1.2 Dissemination of SEED data (UC1.14)). For all other cases, the generic Functional Negative Acknowledgement (IE906: C_FUN_NCK) message should be used for the Common Domain and the IE704 for the External Domain. The IE906 (C_FUN_NCK) message contains the following information:

· The Error Type data item containing the code of the error as a numerical value from the applicable Codelist.

· The Error Reason is an alphanumeric data item to include a human-readable description of the error. The data item might contain the description corresponding to the code used for the Error Type data item, or further reasons and/or explanations about the error. If the Error Type data item contains the value of zero, which does not have a specific description, the message issuer may further explain the reason for the error.

· Optionally, the Error Location containing the XPath location of the error. This data item is optional as the sender’s application may not support this information. It is recommended to avoid including the Error Location if the XPath string is to be truncated (i.e. if the length of the string is greater than the length of the relative Data Item), thus avoiding reporting inaccurate location.

VII.I.3.2.3.1 Coordination protocol validations
A number of validations relating to the coordination protocol should be performed in order to facilitate the exception handling in the Common Domain as described in the scenarios of III.I.2 Exception Handling (EH). The errors resulting coordination protocol validations are summarised in Table 14.
	Code
	Description
	Remarks

	26
	Duplicate detected
	The same interchange is received again. Duplication is detected by reception of an interchange reference that has already been received.

	90
	Unknown ARC
	The ARC of the received FMS is not known, whereas it is expected to be known.

	91
	Duplicate LRN
	The LRN of the received FMS is already known and is therefore not unique according to the specified rules.

	92
	Message out of sequence
	The message cannot be processed, because the receiver is not a proper state.

	93
	Invalid ARC
	The structure of the ARC does not conform to specifications given in FESS [A1] Appendix B.

Table 14: Coordination protocol error codes
Code 26 (Duplicate detected) is of particular importance to the coordination protocol that ensures the uniqueness of the Message Identifier for a pair of sender/receiver as defined in VI.I.4 Common Message Header. For IE702 and IE714 only code 26 (Duplicate detected) applies and it is only used by central SEED in the NEA to SEED message exchanges.

Code 91 (Duplicate LRN) should be used for the External Domain and for IE704 only. The applicability of coordination protocol errors per message are summarised in Table 15.

	
	IE702
	IE704
	IE714
	IE906

	Duplicate detected
	[image: image121.emf]
	[image: image122.emf]
	[image: image123.emf]
	[image: image124.emf]

	Unknown ARC
	
	
	
	[image: image125.emf]

	Duplicate LRN
	
	[image: image126.emf]
	
	

	Message out of sequence
	
	
	
	[image: image127.emf]

	Invalid ARC
	
	
	
	[image: image128.emf]

Table 15: Coordination protocol errors to refusal message map

VII.I.3.2.3.2 Business compliance validations
A number of validations relating to the business compliance should be performed in order to facilitate the exception handling in the Common Domain as described in the scenarios of III.I.2.1 Exception Handling in Common Domain. The errors resulting from business compliance validations are summarised in Table 16.
	Code
	Description
	Remarks

	0
	Other
	This value should be used only when the error does not correspond to any of the following values. It must be stressed that the value of zero should only be used for intra-release migration issues.

	12
	Incorrect (code) value
	Value of an element in a message is outside the applicable business codelist.

	15
	Not supported in this position
	The element or value is not allowed according to the applicable Rule(s) or Condition(s).

Table 16: Business compliance error codes
It should be noted that in the NEA to NEA message exchanges, the business compliance validations should not be performed. The IE702, IE704 and IE714, however, should perform all validations of Table 16. The applicability of business compliance errors per message are summarised in Table 17.
	
	IE702
	IE704
	IE714
	IE906

	Other
	[image: image129.emf]
	[image: image130.emf]
	[image: image131.emf]
	[image: image132.emf]

	Incorrect (code) value
	[image: image133.emf]
	[image: image134.emf]
	[image: image135.emf]
	

	Not supported in this position
	[image: image136.emf]
	[image: image137.emf]
	[image: image138.emf]
	

Table 17: Business compliance errors to refusal message map
The IE714 error codes contain specific codes for refusing economic operator updates presented in Table 18.
	Code
	Description
	Remarks

	0
	Other
	This value should be used only when the error does not correspond to any of the following values. It must be stressed that the value of zero should only be used for intra-release migration issues.

	8
	Trader Authorisation already exists (creation)
	A record with the specified Trader Excise Number already exists.

	9
	Tax warehouse already exists (creation)
	A record with the specified Reference of Tax Warehouse already exists.

	10
	Temporary authorisation already exists (creation)
	A record with the specified Temporary Authorisation Reference already exists.

	11
	Trader Authorisation not found (Update / Deletion)
	The Update / Deletion operation cannot be performed since the specified Trader Excise Number cannot be found.

	12
	Tax warehouse not found (Update / Deletion)
	The Update / Deletion operation cannot be performed since the specified Reference of Tax Warehouse cannot be found.

	13
	Temporary authorisation not found (Update / Deletion)
	The Update / Deletion operation cannot be performed since the specified Temporary Authorisation Reference cannot be found.

	27
	Inconsistency between Excise number and Excise office
	The specified Excise office cannot be used for the specified Excise number (applies to all authorisations).

	41
	Only a warehouse keeper may be allowed to use a tax warehouse
	The data group (USING) TAX WAREHOUSE only applies to tax warehouse keepers.

	112
	Incorrect (code) value
	Value of an element in a message is outside the applicable business codelist.

	115
	Not supported in this position
	The element or value is not allowed according to the applicable Rule(s) or Condition(s).

Table 18: Business compliance error codes specific to IE714
The IE702 error codes contain specific codes for refusing common requests presented in Table 19. Again, it should be noted that in the NEA to NEA message exchanges, the business compliance validations should not be performed. The only IE702 business compliance error codes applicable to the NEA to NEA message exchanges are codes 2 and 8 used in the scenarios of Section III.I.1.4.2 General query to retrieve an e-AAD (UC2.52).
	Code
	Description
	Remarks

	0
	Other
	This value should be used only when the error does not correspond to any of the following values. It must be stressed that the value of zero should only be used for intra-release migration issues.

	2
	No e-AAD(s) retrieved matching selection criteria
	

	3
	Reference data not available
	

	4
	Excise Office List not available
	

	5
	SEED data not available
	

	7
	Unknown requested data
	

	8
	Increment number out of range
	Also used when the maximum limit of retrieved e-AADs has been reached.

	112
	Incorrect (code) value
	Value of an element in a message is outside the applicable business codelist.

	115
	Not supported in this position
	The element or value is not allowed according to the applicable Rule(s) or Condition(s).

Table 19: Business compliance error codes specific to IE702
VII.I.4 Availability and Performance Constraints

The requirements for systems availability for NDEAs, only consider the international requirements, i.e. the NDEAs, availability required to support interoperability with other participating MSAs through the Common Domain. This also means that this constraint does not apply to the External Domains.

During Initial Implementation, all participating MSAs have to guarantee that in the event of a failure of their National Excise Application (NEA) or when their NEA is deliberately taken off-line because of business or technical requirements, all Information Exchanges received from CCN will be held until the NEA comes back on-line. They can then be processed as normal, subject to the NEA fallback rules [A12].

This minimum level of availability is met by the CCN functionality.

Sending NEAs should not re-send IEs for which there have been no replies as a result of unavailability of the receiving NEA. The re-sending should occur only upon request of the NEA, or receipt of an exception report.

Specifically for NEAs, the sending NEA should “enable” the sequence check mechanism in order to respect the correct sequence of messages, when this is explicitly defined, as is the case for IE801 and IE818.
Performance constraints related to Information Exchanges crossing the External Domain (communication between a NEA and its Traders) or within the National Domain (communications between different locations of the same NEA) are a national matter and should be fixed individually by each NEA.

The time constraints applied to Information Exchanges crossing the Common Domain (communication between two NEAs or between a NEA and Central EMCS Reference Site) must permit meeting the performance constraints defined in Appendix A of FESS [A1].

Section VIII XML formatting

This section defines how the messages need to be formatted in XML format. In particular, it specifies the XML conventions for EMCS as well as the Character Sets that shall be supported by NDEAs. Finally, the XML mapping of IEs and the XSDs are defined in Appendix E and Appendix H respectively.

VIII.I.1 XML Schema

The XML (Extensible Markup Language) is a subset of SGML (ISO 8879). Originally designed to meet the challenges of large-scale electronic publishing, its goal is to enable generic SGML to be served, received and processed on the web in the way that is now possible with HTML. XML has been designed for ease of implementation and for interoperability with both SGML and HTML. The complete specific of XML 1.0 can be found at http://www.w3.org/TR/1998/REC-xml-19980210
.

The XML schema definition language [S15] is a model for describing the structure of information. In particular, the XSD defines a type of XML document in terms of constraints upon what elements and attributes may appear, their relationship to each other and what types of data may be in them. The schema language, which is introduced in XML 1.0 and uses namespaces, considerably extends the capabilities found in XML 1.0 document type definitions (DTDs).

The Design Document for National Excise Applications imposes that XML formatted messages are valid, UTF-8 encoded [S2], XML 1.0 [S1] documents that follow the rules defined in the XML Schema [S15].

VIII.I.1.1 XML namespaces

The XML format specification makes use of the name space concept. XML namespaces provide a simple method for qualifying element and attribute names used in XML documents. The use of different namespaces visually identifies the source schema for a XML element in an instance and enables the logical separation of elements that represent the XML Entity Model, XML Entity Actions and XML message definition.

The significant namespaces are:

· “ea” to qualify elements and attributes related to the XML Entity Actions;
· “msg” to qualify elements and attributes related to the definition of a XML message;

· “exc” to qualify excise domain specific elements and attributes;

· “lsd” to qualify language specific elements and attributes;

VIII.I.1.2 XML Schema Versioning

The versioning of the XML Schema that will be used for DDNEA XML is dependent on the kind of change:

· For changes that add new elements to a XML Schema, the values for the XML Schema attribute ‘version’ of the schema and ‘schemaVersion’ attribute of the XML instance document will be updated to reflect the new minor version number e.g. ‘v1.01’;

· For changes to the meaning of existing XML Schema elements, the value of the “targetNamespace” attribute of the schema and the “xmlns” attribute of the XML instance documents will be updated to reflect the new major version number e.g. “v2.00”.

This strategy enables seamless migration to new XML Schema definitions, and the concurrent support of both old and new schema versions. As the XML Schema and this document may evolve separately, the “schemaVersion” attribute in DDNEA XML does not reflect the version number of this document. It is intended that in the first version of DDNEA, DDNEA Phase 2 will contain the value ‘v1.00’ for the “schemaVersion” attribute. Subsequent changes to the DDNEA messages XML format may then be reflected in major or minor “schemaVersion” number changes.

VIII.I.2 Character set support

XML document and schema always use one encoding, which is specified in the prologue of the document and schema. Currently this encoding will be UTF-8. The EMCS system (or NDEA application) will support the UTF-8 character set encoding for all message exchanges.
VIII.I.3 XML mapping of Information Exchange

XML mapping of all Information Exchange in EMCS can be found in the corresponding Appendix E.

VIII.I.4 XML schema mapping of Information Exchange (XSD)

The XML schemas for all messages used in EMCS are provided in the corresponding directory (Appendix H

 REF _Ref139946607 \h
 * MERGEFORMAT : Directory with XML Schemas (XSDs)).
Section IX Transport of Messages via CCN/CSI

IX.I.1 Introduction

IX.I.1.1 Summary

This section specifies the exchange of EMCS messages through the Common Domain.

The specification consists of a set of specified items that are grouped in two parts:

· The mandatory items: these consist of all choices that need agreement in the Common Domain to ensure end-to-end communication between NEAs.

· The recommended items: these consist of all recommendations for the best possible performance of the communication means. The varied architectural constraints that may exist on different NDEA platforms have also been considered.

IX.I.1.2 Architectural Assumptions

1. The exchanges in the Common Domain use the communication services provided by the CCN/CSI infrastructure. The CCN/CSI infrastructure has the main objective of exchanging CCN messages across the Common Domain: a CCN message is an object that is created, sent and received through the CSI API. A CCN message has a structure composed of service elements and Application data. The CCN infrastructure consists of a set of interconnected Gateways; each NEA is able to use the CCN services by connecting a NEA front end to a nationally located Gateway and accessing this Gateway through the CSI API.

2. Only the subset of CCN asynchronous communication services is used in EMCS.

3. The CCN asynchronous services operate on persistent storage objects named “queues”. In this mode, CCN messages are exchanged between queues by the CCN services. There exists a consistent naming convention for all queues defined for EMCS.

4. In EMCS, the Application data within a CCN message consists of one Information Exchange.

5. The responsibility for routing a CCN message coming from the Common Domain, once it is present in the receiving queue, entirely lies upon the NEA. This includes the steps of (a) reading from the receiving queue; (b) dispatching the message contents to processes and destinations within the National Domain; (c) extracting where appropriate the XML message from the CCN message; (d) reacting appropriately to the XML message contents in accordance with the EMCS business process threads, rules and conditions.

6. The Information Exchanges do not require an immediate answer. However, the duration between a request and an answer (functional IE) is at maximum 15 minutes.

7. A NEA is interacting with CCN/CSI via CCN/CSI API calls. It is mandatory to check the result of any API call (by checking the API return and reason codes) to assure the proper execution of the API call and to take corrective actions in case of problems.

8. Whenever an Information Exchange is sent, CCN/CSI enables to request report messages indicating the state of the message transfer. The usage of these report messages is mandatory. The sender must check the reception of the report messages and corrective action needs to be taken in case of problems.

9. CCN/CSI enables automated ARC nursing, whereby an automated application can track all CCN/CSI exchanges related to a single ARC and sequence number, including the exchange of the various CCN/CSI reports. In order to support ARC nursing, it is highly recommended to follow the conventions defined for the usage of CorrelId in the CCN/CSI exchanges.

10. In EMCS, when two Information Exchanges are sent to the same queue on the same Gateway and the sequence of these is significant then it is the responsibility of the sending NEA to ensure that this sequence is maintained under all conditions. This may be achieved by delaying the sending of the second until receipt of the first has been acknowledged.

11. In order to prevent a message from being deleted from a queue before it has actually been processed, the usage of the verb get is not allowed since it will effectively delete the message from the queue. Instead, the queue should first be browsed using the verb browse; if the retrieval and processing of the message is successful it may be deleted from the queue using the verb delete.
IX.I.2 Topology

IX.I.2.1 References to CCN/CSI

The exchange in the Common Domain may use the communication services provided by the CCN/CSI infrastructure.

This document does not describe CCN/CSI. That information is available in the relevant CCN/CSI manuals. The document provides a brief overview of the CCN communication, with the aim of helping the reader to find his/her way into the CCN/CSI documentation and it also defines the programming choices applicable to EMCS.

The definitions of data structures, of data types and of constants are found in “include” files (for the C language) or “COPY” files (for the COBOL language) and or “JCSI (for the Java language). “Library” files providing the compiled code that must be linked with the application-compiled code are also provided. The indications of the files to use are given in:

· For the C language: see [A3] “Building an application on UNIX systems”.

· For the COBOL language on BS2000: see [A4].

· For the COBOL language on CICS: see [A5]

· JCSI Reference Manual for the Java language;

IX.I.2.2 The CCN communication reminder

This chapter presents those elements of CCN/CSI that are agreed to ensure end-to-end communication between two CCN Gateways.

In this chapter, the word “message” is to be understood as “CCN message”.

CCN carries messages between Gateways. The messages are prepared and sent by a sending Application, using CSI API; the messages are received and interpreted by a receiving Application. The communication uses the asynchronous mode.

An application is said to communicate in asynchronous mode when this application is able to send a message without having established a connection with its peer application. Messages are exchanged by placing them in and extracting them from, queues.
Figures available from an application currently operational on CCN/CSI demonstrate that the total request/reply round trip delay - i.e. until to receive the Confirmation on Arrival (CoA) - is in the range of 5 to 10 seconds with all accesses performed in asynchronous mode. This is the time between the moment that the sender puts a Request on its sending queue and the moment when the reply is available for the sender to retrieve from its receiving queue.

The structure of the message consists of:

· A description of the message or “message descriptor” (see IX.I.2.2.1).

· A description of the data or “data descriptor” (see IX.I.2.2.2); the data descriptor is said to ‘contain’ the data, even when actually it contains only a description consisting of length (in bytes) and address in memory or location in the file system.

· A description of specific parameters, called “quality of services”. These parameters describe particular handling that has to be applied (when sending) or was applied (when receiving), on the data contained in the data descriptor during execution of a CSI verb.

These three structure components are further detailed in the three paragraphs (IX.I.2.2.1, IX.I.2.2.2 and IX.I.2.2.6) that follow.

The sending and receiving of CCN messages may occur after the application has connected itself to the CCN Gateway, has created a security context and has connected to the queue manager: these steps are further detailed in the paragraphs (IX.I.2.2.8, IX.I.2.2.9, IX.I.2.2.10 and IX.I.2.2.11) that follow.

A NEA will always interact with CCN/CSI via CCN/CSI API calls. It is essential that the correct execution be checked after each API call (by checking the API return code) and that appropriate action is taken when the API call has failed. Possible API return codes are documented in [A9].

IX.I.2.2.1 The message descriptor

The message descriptor consists of a CSIMQMD structure.

This structure is to be prepared, prior to sending a message with the CSI_mq_put verb.

This structure is to be interpreted and some of its elements have to be copied back in an equivalent structure when an Information Exchange is replied with another Information Exchange, in line with the Time Sequence Diagram demonstrated in paragraph IX.I.2.2.7.

Table 20 details the CSIMQMD structure members.
	Typedef struct tag
	Value on SEND
	Value for CCN Report
	Notes

	CSIMQMD {

	CSICHAR4
	StrucId;
	CSIMQMD_STRUC_ID
	CSIMQMD_STRUC_ID
	

	CSILONG
	Version;
	CSIMQMD_VERSION_1
	CSIMQMD_VERSION_1
	

	CSILONG
	Report;
	0L
	0L
	

	CSILONG
	MsgType;
	CSIMQMT_REQUEST or

CSIMQMT_DATAGRAM
	CSIMQMT_REPORT
	

	CSILONG
	Expiry;
	3 456 000L
	(DNC)
	

	CSILONG
	Feedback;
	CSIMQFB_NONE
	
	

	CSILONG
	Encoding;
	0L
	(DNC)
	

	CSILONG
	CodedCharSetId;
	0L
	(DNC)
	

	CSICHAR8
	Format;
	Empty string
	(DNC)
	

	CSILONG
	Priority;
	0L
	(DNC)
	

	CSILONG
	Persistence;
	CSIMQPER_PERSISTENT
	(DNC)
	Message persistence

	CSIBYTE24
	MsgId;
	CSIMQCI_NONE
	=MsgId of reported Msg
	Message identifier

	CSIBYTE24
	CorrelId;
	=ARC + sequence number
	= CorrelId of reported Msg
	

	CSILONG
	BackoutCount;
	0L
	(DNC)
	Backout counter

	CSICHAR48
	ReplyToQ;
	Empty string
	(DNC)
	Not used

	CSICHAR48
	ReplyToQMgr;
	Empty string
	(DNC)
	Not used

	CSICHAR12
	UserIdentifier;
	Empty string
	(DNC)
	Not used

	CSICHAR32
	AccountingToken;
	Empty string
	(DNC)
	Not used

	CSICHAR32
	ApplIdentityData;
	Empty string
	(DNC)
	Not used

	CSILONG
	PutApplType;
	0L
	(DNC)
	Not used

	CSICHAR28
	PutApplName;
	Empty string
	(DNC)
	Not used

	CSICHAR8
	PutDate;
	Empty string
	(DNC)
	Not used

	CSICHAR8
	PutTime;
	Empty string
	(DNC)
	Not used

	CSICHAR4
	ApplOriginData;
	Empty string
	(DNC)
	Not used

	} CSIMQMD;

Table 20: MQ Message Descriptor

Notes:

1. Column “Value on SEND” exhibits the value that an application has to set in each structure member.

2. Column “Value for CCN report” defines the value set in the CCN reports.

3. The indication “(DNC)” means: “Do not consider”.

4. Values in uppercase are CCN/CSI constants defined in the header files.

5. The value CSIMQMT_REQUEST has the effect of requesting a reply. The name of the queue to which the reply is to be sent is contained in ReplyToQ field of CSIQOS structure.

6. The CCN Gateway buffers incoming messages in case the application is temporarily unable to process them. The requirement is to be able to buffer the messages for 96 hours (in tenths of second, this duration amounts to: 96 x 3600 x 10 = 3 456 000).

7. Value in ‘Feedback’ is set by the queue manager to indicate, within a report message, how the original message was handled on the Destination queue. The reports are sent back to the sender as specified by the parameters set in the configuration (Section IX - Transport of Messages via CCN/CSI). Possible values are:
	· A value comprised in the range from CSIMQFB_SYSTEM_FIRST and CSIMQFB_SYSTEM_LAST (those limits included)
	Exception report

	· CSIMQFB_EXPIRATION
	Expiration report

	· CSIMQFB_COA
	Confirm on Arrival report

	· CSIMQFB_COD
	Confirm on Delivery report

8. The MsgId value is an identifier used by the application to correlate a Report Message with the Information Exchange it reports about. As an Expiration report may only be generated after 96 hours (see Note 2 for ‘Expiry’ field above), it is recommended that the MsgId generating rule uses a counter that does not “rewind” in less than 96 hours.

As the field MsgId presents 24 bytes, the NDEA designer is able to choose a MsgId definition that covers this condition and well beyond.

For the generation of the MsgId field the following conventions should be followed:

· When sending a message, the MsgId is generated from the sending application.

· When a report is sent back, the MsgId is equal to the MsgId of the original message.

Therefore, the MsgId needs to be set to CSIMQMI_NONE. The queue manager will then generate a unique message identifier upon sending.

The MsgId of the original message is copied into the MsgId of the report message by setting the appropriate flag CSIMRQRO_PASS_MSG_ID in the ReportRequest field of the QOS.

9. For the generation of the CorrelId field the following conventions should be followed (the decision process is presented as a flowchart in Figure 113):
· The CorrelId field of the report messages should to be equal to the CorrelId of the original message by setting the appropriate flag CSIMRQRO_PASS_CORREL_ID in the ReportRequest field of the QOS. A report message is sent back to the sender:
· Confirm on Delivery (CoD) report when the message has been read by the receiving application and deleted from the queue.

· Confirm on Arrival (CoA) report when the message has arrived on the remote Gateway.

· Expiration (EXP) report when a value of time lapse set in the CSIMQMD.Expiry variable (see Note 2) has expired and an application tries to retrieve this message after the elapsed expiration time: the message, once arrived on Destination queue (CoA), was not fetched from this queue by an application program during the time allotted.

· Exception (EXC) report when other technical errors that are related to the queuing system have occurred.
The usage of the four report messages (CoA, CoD, EXP, EXC) is mandatory. A NEA will have to request all four types of reports whenever an Information Exchange is sent and will have to wait for the reception of the reports for any Information Exchange sent. In case of problems, corrective action needs to be taken. This usage is further discussed in paragraph IX.I.2.2.7.
The report messages are to be read from the queue whose name is given by the element “ReplyToQ” of the Quality of Service structure. See Table 23. The report messages do not contain the original message.
In case the report message could not be delivered to the queue indicated by this element, it will be stored on the dead-letter queue (CSIMQRO_DEAD_LETTER_Q) on the gateway that sent the report. Each CCN Gateway needs to have this type of queue.
· The CorrelId field of the IE702, IE714, IE906, and IE917 refusal messages should be equal to the value of the MsgId field of the corresponding erroneous message (IE702 for an erroneous IE701, IE714 for an erroneous IE713, and IE906 and IE917 for any erroneous message). This will enable the correlation of refusal messages to the corresponding erroneous messages.
· In order to support ARC nursing, the CorrelId field of the messages exchanged concerning a movement (IE801, IE802, IE810, IE813, IE818, IE837, IE904, IE905, and IE934) should to be equal to the ARC + Sequence Number (in an ASCII format).
· The CorrelId field of the rest of the messages in EMCS should be equal to the empty string.
[image: image139.png]type o message

Correlld = Correlld of the
original message

report message? yes—

Correlld = Msgld of the

refusal message?
erroneous message

“message concerning.
‘amovement?

Correlld - ARC + Sequence
Number

)

Correlld = empty sring.

Figure 113: The generation of the CorrelId field value decision process
IX.I.2.2.2 The data descriptor

The data descriptor is implemented by a CSIDD structure shown in Table 21.
	Typedef struct tag
	Value on SEND
	Data descriptor

	CSIDD {

	CSICHAR4
	StrucId;
	CSIDD_STRUC_ID
	Structure identifier

	CSILONG
	Version;
	CSIDD_VERSION_1
	Structure version

	CSILONG
	Flags;
	O_MEMORY or O_FILE
	

	CSICHAR256
	FileName;
	See IX.I.2.2.4
	

	CSIULONG
	DataLength;
	See IX.I.2.2.4
	

	CSIBYTE
	*Data;
	See IX.I.2.2.4
	

	} CSIDD;

Table 21: CSI Data Descriptor

Notes:

1. Column “Value on SEND” exhibits the value that an application has to set in each structure member.

2. The CSIDD structure allows the representation of data:

· Either located in core memory: the structure element ‘Flags’ must have the value O_MEMORY.

· Or located in a file: the structure element ‘Flags’ must have the value O_FILE.

The choice of which method to use for passing the application data is strongly dependent on the design choices taken for the application: it is recommended that the “O_MEMORY” method be used whenever possible.

IX.I.2.2.3 Allocation of a CSIDD

The CSIDD has to be allocated dynamically and initialised with the function HL_alloc(), documented in [A8]:
CSILONG HL_alloc(

 CSIULONG
SizeRq,

 CSIDD
**DataOut,

 CSILONG
*ReturnCode,

 CSILONG
*ReasonCode

);

If the data are represented in core memory, the value of argument SizeRq must be at least equal to or greater than, the length of the application data (expressed in octets).

Upon successful call to HL_alloc(), some elements of the allocated CSIDD structure are initialised:

· StrucId = CSIDD_STRUC_ID.

· Version = CSIDD_VERSION_1.

· Flags = O_MEMORY.

· DataLength = 0L.

When a CSIDD structure is not used anymore, it has to be given back to system resources by performing the HL_free() verb, documented in [A8]:

CSILONG HL_free(

 CSIDD
**DataOut,

 CSILONG
*ReturnCode,

 CSILONG
*ReasonCode

);

The example for allocation of a CSIDD structure is part of the listing in [R5].

IX.I.2.2.4 Inserting the application data into the CSIDD structure

The application data consist of an Information Exchange in XML format. In the example provided in Figure 114, they are represented as a core memory value named ‘Request’.

· If the application data are represented in core memory:

They have to be copied from their current location into the buffer allocated and pointed to by CSIDD.Data and the element “DataLength” must be entered as the exact length (expressed in octets) of the application data. It cannot be assumed that the Information Exchange is represented in memory as a NULL-terminated string according to the ANSI C convention. The example for this case is provided (as statement “memcpy”).

· If the application data are represented in a file:

The elements of the CSIDD structure must be set to:

· Flags = O_FILE.

· DataLength = length of useful contents in the File.

· FileName = full path name of the file. ‘FileName’ is set to the path name of a file containing application data.

IX.I.2.2.5 Encoding the CSIDD for EMCS

When the CSIDD is prepared, with elements either FileName or Data (as well as DataLength) correctly initialised by the application, it has to be presented, on the sending side to the HL_encode() verb. Conversely, after being received, a CSIDD structure must be presented to the HL_decode().

The prototype of the HL_encode verb is:

CSILONG HL_encode(

IN
CSIDD
*DataIn,

IN
CSICHAR32
MsgTypeId,

IN
CSILONG
CodePage,

IN
CSICHAR128
HostFormat,

OUT
CSIDD
*DataOut,

OUT
CSILONG
*ReturnCode,

OUT
CSILONG
*ReasonCode

);

The parameter MsgTypeId must have a value within a pre-determined set of values that are listed in Table 21 under Header MsgTypId. These values are actually produced by the CCN-TC as the result of the operations described in Table 22.

	IE
	IE Name
	Reference
	Message Type string
	Core

	701
	Common Request
	C_REQ_SUB
	“CD701A-MSG.emcs”
	

	702
	Refusal of Common Request
	C_REQ_REF
	“CD702A-MSG.emcs”
	

	713
	Incremental Update or Full Register of Economic Operators
	C_QRO_DAT
	“CD713A-MSG.emcs”
	

	714
	Refusal of update of economic operators
	C_QRO_REF
	“CD714A-MSG.emcs”
	

	734
	Reference Data Dissemination
	C_RDD_REF
	“CD734A-MSG.emcs”
	

	801
	E-AAD
	C_AAD_VAL
	“CD801A-MSG.emcs”
	[image: image140.emf]

	802
	Reminder message for Excise movement
	C_EXC_REM
	“CD802A-MSG.emcs”
	[image: image141.emf]

	803
	Notification of Diverted e-AAD
	C_AAD_NOT
	“CD803A-MSG.emcs”
	[image: image142.emf]

	810
	(Confirmation of) cancellation of e-AAD
	C_CAN_DAT
	“CD810A-MSG.emcs”
	[image: image143.emf]

	813
	Change of Destination
	C_UPD_DAT
	“CD813A-MSG.emcs”
	[image: image144.emf]

	818
	Accepted or Rejected report of receipt
	C_DEL_DAT
	“CD818A-MSG.emcs”
	[image: image145.emf]

	821
	List of AAD as result of a general query
	C_LST_VAL
	“CD821A-MSG.emcs”
	[image: image146.emf]

	829
	Notification of Accepted Export
	C_EXP_NOT
	“CD829A-MSG.emcs”
	[image: image147.emf]

	837
	Explanation on Delay for Delivery
	C_DEL_EXP
	“CD837A-MSG.emcs”
	[image: image148.emf]

	839
	Customs Rejection of e-AAD
	C_CUS_REJ
	“CD839A-MSG.emcs”
	[image: image149.emf]

	904
	Status Request
	C_STD_REQ
	“CD904A-MSG.emcs”
	[image: image150.emf]

	905
	Status Response
	C_STD_RSP
	“CD905A-MSG.emcs”
	[image: image151.emf]

	934
	Data Packaging
	C_PAC_DAT
	“CD934A-MSG.emcs”
	[image: image152.emf]

	906
	Functional NACK
	C_FUN_NCK
	“CD906A-MSG.emcs”
	

	917
	Negative Acknowledgement of XML receipt
	C_XML_NAC
	“CD917A-MSG.emcs
	

Table 22: MsgTypId used for an Information Exchange of EMCS

See related chapter IX.I.5.2 for an explanation of arguments ‘CodePage’ and ‘HostFormat’ as obtained from configuration information.

The listing in R5 illustrates the usage of HL_alloc and HL_encode verbs, as well as the initialisation of the CSIDD structure with the XML Information Exchange.

REQUEST
Request;

CSIDD
pCSIrequest;

CSILONG
ReturnCode;

CSILONG
ReasonCode;

The variable Request has been prepared in REQUEST structure. Assume Request is the XML _interchange for a CD801A message

Steps are:
(1) (see IX.I.2.2.3) Allocate Data Descriptors for request

HL_alloc (sizeof (REQUEST), &pCSIRequest, &ReturnCode, &ReasonCode);
(2) (see 2.1.2.2) Copy REQUEST structure into “Data” field of request CSIDD structure

memcpy (pCSIrequest->Data (CSICHAR *) &Request, sizeof (REQUEST));
pCSIrequest->DataLen = sizeof (REQUEST);
(3) (see 2.1.2.3) Encode request

HL_encode (pCSIrequest, “CD801A-MSG.EMCS”, CODEPAGE, HFMT, pCSIrequest, &ReturnCode, &ReasonCode);

After these steps: the CSIDD will be sent with HL_mq_put() verb. Logging of this CSI movement will take a record of “CD0801A”

Figure 114: Example of CSIDD allocation, initialisation with Information Exchange and encoding

This code is not intended to be used directly as actual working code. All API return codes (and possibly reason codes) will have to be checked after every API call.

IX.I.2.2.6 The quality of service

CCN/CSI defines a structure - called CSIQOS - to specify (or to retrieve) which type of particular handling has to be applied (or has been applied) on the data contained in a given Data Descriptor parameter of a verb during execution of this verb.

A default QoS is pre-defined for an application via a configuration parameter. This default QoS is retrieved by the CSI stack during the session establishment. This QoS structure should be used by the programmer. However, two fields of the QoS are not defined in the configuration and have to be specified for each call: the priority and the report reply queue.

Requirements for the message descriptor:

· This structure is to be prepared, prior to sending a message.

The Quality of Service is represented by the CSIQOS structure shown in Table 23. The fields applicable in this structure are ticked with a “[image: image153.emf]” in the right-hand column of this Table.
	typedef struct tag
	 value on SEND
	Notes
	

	CSIQOS{

	CSICHAR4
	StrucId;
	CSIQOS_STRUC_ID
	Structure id.
	[image: image154.emf]

	CSILONG
	Version;
	CSIQOS_VERSION_1
	Structure version
	[image: image155.emf]

	CSILONG
	QoSToApply;
	
	Specified QoS
	[image: image156.emf]

	CSILONG
	AppliedQoS;
	(DNC)
	Applied QoS
	[image: image157.emf]

	CSILONG
	Priority;
	
	Priority value
	[image: image158.emf]

	CSILONG
	ReportRequest;
	
	Report/Request flag
	[image: image159.emf]

	CSICHAR48
	ReplyToQ;
	
	Name of reply queue
	[image: image160.emf]

	CSICHAR48
	ReplyToQMgr;
	(DNC)
	Name of reply queue mgr
	[image: image161.emf]

	CSIBYTE24
	CorrelId;
	Empty string
	Correlation id.
	[image: image162.emf]

	CSILONG
	Integrity;
	
	Integrity flag
	[image: image163.emf]

	CSILONG
	Confidentiality;
	
	Confidentiality flag
	[image: image164.emf]

	CSILONG
	Compression;
	
	Compression flag
	[image: image165.emf]

	CSICHAR8
	CompressionId;
	
	Comp. Algorithm id.
	[image: image166.emf]

	CSICHAR16
	CoT;
	DEFAULTCOT
	Class of Traffic
	[image: image167.emf]

	CSICHAR48
	VASScript;
	Empty string
	VAS script name
	[image: image168.emf]

	CSILONG
	DegradedMode;
	(DNC)
	Degraded mode flag
	

	} CSIQOS;

Table 23: CCN/CSI Quality of Service structure

Notes:

1. Column “Value on SEND” exhibits the value that an application has to set in each structure member.

2. ‘QoSToApply’ is a vector of bits obtained by adding once or by performing a bitwise OR operation between, the set of values that follow:

QoSToApply =

CSI_QOS_PRIORITY +

CSI_QOS_REPLYTO_Q +

(0 or CSI_QOS_INTEGRITY: see Note 6.a) +

(0 or CSI_QOS_CONFIDENTIALITY: see Note 6.a) +

(0 or CSI_QOS_COMPRESSION: see Note 6.c) +

(0 or CSI_QOS_COMPRESSION_ID: see Note 6.c)
3. Two priority values are distinguished (these values are written with the C language convention for long integers):

a) High priority: QoS priority parameter has value 7L.

b) Normal priority: QoS priority parameter has value 5L. Normal priority is applicable to the other Information Exchanges exchanged across the Common Domain.

When a message is retrieved from a Destination queue, it is accompanied with the QoS that was set at the time of sending. Therefore, the priority set when sending has to be used to fetch the received message in accordance with the rule:

Rule for fetching messages from a receiving queue:

High priority messages will always be processed first and within the same priority level a “first in, first out” behaviour will be used.

4. ‘ReportRequest’ specification is fully defined by configuration (see chapter IX.I.5) and hence is not to be set for each individual message. One thus has the choice to use either the default value set by configuration or to use an individual value for every individual message sent. In any case it is required to request all 4 types of reports (CoA, CoD, EXC, EXP) whenever an Information Exchange is sent. In addition, the following flags need to be set for copying MsgId and CorrelId from the original message to the report message:

· C_SIMQRO_PASS_MSG_ID

· C_SIMQRO_PASS_CORREL_ID

5. ‘ReplyToQ’ is to be set to the name of a queue that exists on the CCN Gateway used by the sending application. This name is of no use for the receiving application (because the report message is constructed and sent by the CCN software and not by the receiving application).

6. The attributes “Integrity”, “Confidentiality” and “Compression” apply to the link between the NDEA platform and the CCN gateway [R3] and [A8]. Therefore, the choice of modifying the values preset at Configuration time (see paragraph IX.I.5.2.1) depends of the strength of this link as perceived by the NDEA Local Security Officer.
The following notes apply to the situation where the decision is taken to change the default values.

a) If the Nationally Developed Excise Application chooses to set the Integrity for a specific message differently from the configured value, then

· Value CSI_QOS_INTEGRITY must be added to QoSToApply

· Element ‘Integrity’ in CSIQOS takes the value CSI_INTEGRITY_REQUIRED.Else:value CSI_QOS_INTEGRITY must not be added to QoSToApply.

· Element ‘Integrity’ in CSIQOS takes the value CSI_INTEGRITY_NOT_REQUIRED

b) See chapter IX.I.5 for the explanation of the configuration options set for the Confidentiality (data are encrypted). If the National Developed Application or the NEA chooses to set the Confidentiality for a specific message differently from the configured value, then:

· Value CSI_QOS_CONFIDENTIALITY must be added to QoSToApply (see Note 1).

· Element ‘Confidentiality’ in CSIQOS takes the value CSI_CONFIDENTIALITY_REQUIRED.

Else:

· Value CSI_QOS_CONFIDENTIALITY must not be added to QoSToApply (see Note 1).

· Element ‘Confidentiality in CSIQOS takes the value CSI_CONFIDENTIALITY_NOT_REQUIRED.

c) See chapter IX.I.5 for the explanation of the configuration options set for the Compression and CompressionId. If the Nationally Developed Excise Application chooses to set these parameters for a specific message differently from the configured value, then:

· Value CSI_QOS_COMPRESSION and CSI_QOS_COMPRESSION_ID must be added to QoSToApply (see Note).

· Element ‘Compression’ in CSIQOS takes the value CSI_COMPRESSION_REQUIRED.

· Element ‘CompressionId’ in CSIQOS takes the value CSI_COMPRESSIONID_LZW.

Else

· Value CSI_QOS_CONFIDENTIALITY must not be added to QoSToApply (see Note).

· Element ‘Confidentiality in CSIQOS takes the value CSI_COMPRESSION_NOT_REQUIRED.

· Element ‘CompressionId’ in CSIQOS takes the value CSI_COMPRESSIONID_NONE.

IX.I.2.2.7 Illustration of the use of the QOS parameters

This section illustrates by means of Time Sequence Diagrams the use of the QoS parameters and of the CCN report messages. It shows the communication between a sending CSI stack, a sending CCN Gateway, a receiving CCN Gateway and a receiving CSI stack. It shows several cases starting with the normal case in which a Confirm On Arrival and Confirm On Delivery are received. Based on this normal case, several exceptions are shown in Figure 115.

[image: image169.emf]

Sending

CCN Gateway

Sending

CSI Stack

Receiving

CCN Gateway

Receiving

CSI Stack

C

S

I

M

e

s

s

a

g

e

C

S

I

M

e

s

s

a

g

e

C

o

n

f

i

r

m

o

n

A

r

r

i

v

a

l

b

r

o

w

s

e

(

C

S

I

m

e

s

s

.

)

d

e

l

e

t

e

(

C

S

I

m

e

s

s

.

)

C

o

n f

i

r

m

o

n

D

e

l i

v

e

r

y

Normal use of QoS parameters for EMCS

Figure 115: Normal use of QoS parameters for EMCS

Figure 115 shows that a queue is to be first browsed for a message, before the message is deleted (after having processed the message). This use of CSI verbs is mandatory, in order to prevent a message from being deleted from a queue before it has actually been processed. The usage of the verb HL_mq_get is not allowed.

It should be noted that, for every Information Exchange sent, the user will have to wait for the reception of the CoA and CoD before concluding that the message has been transferred successfully. The CoA is denoting that the Information Exchange has reached the destination queue, while the CoD is denoting that the Information Exchange has been successfully processed at (and deleted from) the destination queue. Please also note that CCN/CSI does not assure the delivery of CoA and CoD in sequence (in rare occasions, the CoD may be returned first).

If a message cannot be sent to a Destination CCN Gateway, the result is indicated in the CSI verb (HL_mq_put). This type of error needs to be handled by the sending CSI stack. In such a case, the CSI message will never arrive at its Destination CCN Gateway and no CCN report message will be generated.

An exception report can be generated for various reasons and can be generated by both sending and receiving Gateways. Whenever a sending application is submitting a message to CCN/CSI via the HL_mq_put verb, the message will first be stored in the internal technical queues of the CCN/CSI stack on the sending Gateway. CCN/CSI will then attempt to forward the message from the internal technical queues on the sending Gateway to the internal technical queues on the receiving Gateway and from these to the destination queue on the destination Gateway. An exception report is generated whenever an anomaly is detected in the internal CCN/CSI behaviour (at either sending or receiving Gateway). This can e.g. be:

· Incorrect addressing at CCN/CSI level, either at sending or receiving side (e.g. invalid Gateway or invalid queue name)

· Unavailability of the receiving Gateway when attempting to transfer the message.

The CCN/TC is maintaining a number of availability flags for the different Gateways. Whenever a Gateway is marked, as down, an EXC report will immediately be generated upon sending to this Gateway. When the Gateway is not marked, as down, CCN/CSI will attempt to transfer the message; if this does not succeed, an EXC report can still be generated by the sending Gateway.

As Figure 116 depicts, the Expiration report can be created when the message has arrived at the destination Gateway (Confirm On Arrival has been created) and when the original message has not been read from the Destination queue before the timer set by the ‘Expiry’ field of the message descriptor expires. The Destination CCN Gateway handles the expiration timer. The destination timer is only checked whenever the destination queue is accessed (no expiration reports will be sent when the queue is not accessed at all). Therefore, EXP reports will not always be generated when the expiry took place (they may actually be generated afterwards).

For all these reasons it is therefore mandatory to wait for the processing reports after sending an Information Exchange and to maintain a timer for every Information Exchange sent. When this timer expires, one should check the availability of the destination Gateway (and possibly re-send the message).

[image: image170.emf]

Sending

CCN Gateway

Sending

CSI Stack

Receiving

CCN Gateway

Receiving

CSI Stack

C

S

I

M

e

s

s

a

g

e

C

S

I

M

e

s

s

a

g

e

E

x

c e

p

t

i

o

n

r

e

p

o

r

t

C

o

n

f

i

r

m

o

n

A

r

r

i

v

a

l

Exception and expiration reports

C

S

I

M

e

s

s

a

g

e

C

S

I

M

e

s

s

a

g

e

E

x

p

i

r

a

t i

o

n

r

e

p

o

r t

E

x

p

i

r

a

t

i

o

n

t

i

m

e

r

Exception

Expiration

for COD

Figure 116: Exception and expiration reports

All possible options for the use of the QoS parameters and their exceptions are shown in the State Transition Diagram in Figure 117. This State Transition Diagram specifies the states of one CSI message present in the sending CSI stack, with respect to the use of CCN. It assumes that the binding of the CSI stack to the CCN Gateway has successfully taken place.

[image: image171.png]CSl message excep‘tion report expiration report ready

'

CSI message exception report CSl message COA ‘expiration report CSl message

Figure 117: State Transition Diagram of the sending CSI stack (normal flow)
Each of the transitions shown in the previous figure consists of CSI verbs.

IX.I.2.2.8 Connecting the application to the CCN Gateway

Any instance of any application establishes a CSI session by using the HL_bind() verb:

CSILONG HL_bind(

CSICHAR48
AppliName,

CSICHAR48
ProxyName,

CSIQOS
*DefaultQoS,

CSILONG
*ReturnCode,

CSILONG
*ReasonCode

);

“AppliName” is a value previously registered to the CCN Gateway. A remote proxy name must have been set together with the ApplicationName at configuration time. This default value may not be overridden: therefore the “ProxyName” argument in the HL_bind() call must be an empty string.

Closing a CSI session occurs with the verb HL_unbind().

Note that the session, when established, has no identifier on its own.

IX.I.2.2.9 Creating a security context for an application

Within the session, a security context has to be created by using the verb HL_init_sec_context and is destroyed with the verb HL_delete_sec_context. The parameter of the HL_init_sec_context verb is a CSISECINFO containing (in the current version of CSI software) a GSSNAME structure:

typedef struct tagGSSNAME {

char
user_id[GSS_NAME_LENGTH];

char
application_id[GSS_NAME_LENGTH];

char
user_password[GSS_PASSWD_LENGTH];

char
application_key[GSS_PASSWD_LENGTH];

} GSSNAME;

The components of the GSSNAME structure are:

· A user identification.

· An application name.

· A user password.

· An application key.

These four values must have been configured previously by the NDEA Local Security Officer.

The structure GSSNAME is referenced (i.e. pointed) by a structure CSISECINFO:
typedef struct tagCSISECINFO {

CSILONG securityType;

CSIVOID securityInfoP;

/ here: GSSNAME */

} CSISECINFO;

‘securityType’ is set to the value BI_SEC_TYPE.

Finally the verb HL_init_sec_context() is used with the structure CSISECINFO that was initialised:

CSILONG HL_init_sec_context(

CSISECINFO
*credentialInfo,

CSILONG
*ReturnCode,

CSILONG
*ReasonCode

);

Note that the security context, when established, has no identifier on its own.

The verb HL_delete_sec_context() is used for deleting the security context.

IX.I.2.2.10 Connecting to the queue manager

The application has to connect itself to the queue manager in order to be able to issue commands related to queue access. The verb HL_mq_conn() is used for this purpose:

CSILONG HL_mq_conn(

CSICHAR48
Name,

CSIMQHCONN
*Conn,

CSILONG
*ReturnCode,

CSILONG
*ReasonCode

);

“Name” value must be set to an empty string for current version of CSI.

“Conn” is initialised by this function and has to be used subsequently for opening any queue.

The verb HL_mq_disc() is used to disconnect from the queue manager:

CSILONG HL_mq_disc(

CSIMQHCONN
*Conn,

CSILONG
*ReturnCode,

CSILONG
*ReasonCode

);

Argument “Conn” in this call must be identical to the one obtained from previously using HL_mq_conn().

IX.I.2.2.11 Opening a queue

The application has to open a queue before performing any access to it. See in Table 25 the list of verbs that may be used once a queue has been successfully opened.

The verb HL_mq_open() is used to open a queue:

CSILONG HL_mq_open(

CSIMQHCONN
Conn,

CSIMQOD
*ObjDesc,

CSILONG
Options,

CSIMQHOBJ
*Obj,

CSILONG
*ReturnCode,

CSILONG
*ReasonCode

);

Value of argument “Conn” is identical to the one obtained from HL_mq_conn().

Value of argument “Options” is obtained by adding values that control the HL_mq_open() behaviour. There is no mandatory value of this argument in DDNEA for Phase 2 because the policy for reading and writing into Gateway queues by the application is a local matter. However, the recommended use of the verb HL_mq_browse() for retrieving messages from a queue (see IX.I.2.2.12.4), as well as the use of default configured values, mandates the use of at least the options CSIMQOO_BROWSE and CSIMQOO_INPUT_AS_Q_DEF. Hence:

Options = CSIMQOO_BROWSE + CSIMQOO_INPUT_AS_Q_DEF.

Successful call of the verb HL_mq_open() for a certain queue provides a value “Obj”, called a “handle”, that will be subsequently used in all verbs (listed in Table 25) that deal with this queue.

Argument “ObjDesc” is a CSIMQOD structure that must be initialised as follows:
	Typedef
	struct tag
	Initial value
	Notes

	CSIMQOD {

	CSICHAR4
	StrucId;
	CSIMQOD_STRUC_ID
	Structure id.

	CSILONG
	Version;
	CSIMQOD_VERSION_1
	Structure version

	CSILONG
	ObjectType;
	CSIMQOT_Q
	

	CSICHAR48
	ObjectName;
	
	Name of queue

	CSICHAR48
	ObjectQMgrName;
	(DNC)
	This field must not be used

	CSICHAR48
	DynamicQName;
	(DNC)
	This field must not be used

	CSIBYTE12
	AlternateUserId
	(DNC)
	This field must not be used

	} CSIMQOD;

Table 24: MQ Object Descriptor

Notes

The Queue Name is inserted here. This allows a maximum length of 47 characters for the Queue Name.

When not used anymore, a queue must be closed by using the verb CSI_mq_close:

CSILONG HL_mq_close(

CSIMQHCONN
Conn,

CSIMQHOBJ
*Obj,

CSILONG
Options,

CSILONG
*ReturnCode,

CSILONG
*ReasonCode

);

Value of argument “Conn” is identical to the one obtained from HL_mq_conn().

Value of argument “Obj” is identical to the one obtained from HL_mq_open().

Value of argument “Options” must be set to CSIMQCO_NONE.

IX.I.2.2.12 CSI verbs allowed for queue accesses

When a queue was successfully opened, it is identified by a handle Obj, of type CSIMQHOBJ.

The following verbs may be used to deal with the “Obj” queue contents:
	Class of verbs
	Verb
	Usage

	close queue
	HL_mq_close()
	Mandatory.

	write in queue
	HL_mq_put()
	Mandatory (see also IX.I.2.2.12.2 however).

	read from queue
	HL_mq_browse
	Mandatory

	delete from queue
	HL_mq_delete
	Mandatory. A message must have been successfully read and processed before deleting.

Table 25: CSI verbs for queue access

It is the responsibility of the application to organise the reading from a receiving queue in order to avoid loss of messages.

IX.I.2.2.12.1 Putting a message into a queue: HL_mq_put()

CSILONG HL_mq_put(

CSIMQHCONN
Conn,

CSIMQHOBJ
ObjDesc,

CSIMQMD
*MsgDesc,

CSIMQPMO
*PutMsgOpts,

CSIDD
*DataIn,

CSIQOS
*QoS,

CSILONG
*ReturnCode,

CSILONG
*ReasonCode

);

Value of argument “Conn” is identical to the one obtained from HL_mq_conn().

Value of argument “Obj” is identical to the one obtained from HL_mq_open().

Argument “MsgDesc” points to a CSIMQMD structure that was prepared as explained in IX.I.2.2.1 The values present in this structure after a successful call of the HL_mq_put() are not to be considered.

Argument “DataIn” points to a CSIDD structure that was prepared as explained in Section IX.I.2.2.5.

Argument “QoS” points to a CSIQOS structure that was prepared as explained in Section IX.I.2.2.12.2.
Argument “PutMsgOpts” is to be initialised with the statements:

a) Define a static variable s_DefMQPMO of type CSIMQPMO initialised with constant values:

CSIMQPMO s_DefMQPMO = {CSIMQPMO_DEFAULT};

b) Each time the HL_mq_put() verb will be used, define and initialise dynamically a variable s_MQPMO of type CSIMQPMO by using the static variable s_DefMQPMO:

CSIMQPMO s_MQPMO;

memcpy(&s_MQPMO, s_DefMQPMO, sizeof(CSIMQPMO));

IX.I.2.2.12.2 Putting a message into a queue: HL_mq_put1()

The verb HL_mq_put1() is identical to the verb HL_mq_put(), with the exception that it uses an additional argument to specify the queue that has to be written to, instead of a queue handle. This verb performs in one call the function of the three operations: HL_mq_open(), HL_mq_put(), HL_mq_close().

IX.I.2.2.12.3 Reading a message from a queue: HL_mq_get()

CSILONG HL_mq_get(

CSIMQHCONN
Conn,

CSIMQHOBJ
ObjDesc,

CSIMQMD
*MsgDesc,

CSIMQGMO
*GetMsgOpts,

CSIDD
*DataOut,

CSILONG

*MsgLen,

CSIQOS

*QoS,

CSILONG *ReturnCode,

CSILONG *ReasonCode

);

Beware: As soon a message has been retrieved from a queue using the HL_mq_get() verb, this message is deleted from the queue.

Value of argument “Conn” is identical to the one obtained from HL_mq_conn().

Value of argument “Obj” is identical to the one obtained from HL_mq_open().

The “MsgDesc” argument contains, as input parameter, a set of attributes the message to retrieve must have and as output parameter the set of attributes the retrieved message actually has.

Method 1

When the application is in such a state that it is waiting for a report message, it has to set two attributes in the “MsgDesc” as follows:

MsgDesc.MsgId = CSIMQMI_NONE;

MsgDesc.CorrelId = {value of the MsgId in the original message, for which a report is now awaited};

This initialisation is to be performed before each HL_mq_get() invocation.

Method 2

When the application is in such a state that it is waiting for any kind of message, it has to set two attributes in the “MsgDesc” as follows:

MsgDesc.MsgId = CSIMQMI_NONE;

MsgDesc.CorrelId = CSIMQCI_NONE;

This initialisation is to be performed before each HL_mq_get() invocation.

While the policy for reading messages from a queue with HL_mq_get() depends on the design of the application architecture, it is recommended though to use the Method 2 in combination with a priority value explained in attribute “Priority” of the “QoS”.

This means in practical terms that, within a set of messages read with a uniform “Priority” (see argument “QoS”), the messages will be read in their order of appearance.

They have then to be handled separately in line with the value of the “MsgDesc.MsgType” (either CSIMQMT_REQUEST, CSIMQMT_DATAGRAM or CSIMQMT_REPORT, as stated. Any message with its MsgType equal to CSIMQMT_REPORT must be matched to its own originator by the rule:

[report_message.CorrelId] is equal to [original_message.MsgId]

To be able to correlate a report with the related Information Exchange, it is recommended that the software controlling the sending CSI stack maintains a dynamic table that cross-references the state of a CSI message and its message identification. Message identification consists of:

· Value of field CSIMQMD.MsgId in the message sent by the sending NEA.

· Value of field CSIMQMD.CorrelId in a report message given by the sending NEA (exception, COA, expiration, COD).
The “GetMsgOpts” argument is a structure that controls the behaviour of the HL_mq_get() verb. The structure is shown in Table 26:

	typedef struct tag
	Initial value

	CSIMQGMO{

	CSICHAR4
	StrucId;
	CSIMQGMO_STRUC_ID

	CSILONG
	Version;
	CSIMQGMO_VERSION_1

	CSILONG
	Options;
	

	CSILONG
	WaitInterval;
	

	CSILONG
	Signal1;
	(DNC)

	CSILONG
	Signal2;
	(DNC)

	CSICHAR48
	DynamicQName;
	(DNC)

	} CSIMGMO;

Table 26: CSIMQGMO Object Descriptor
Notes

It is a design issue, related to the NDEA architecture, to choose between an applicative polling of a queue or a triggering mechanism initiated by CCN/CSI software, to be awakened upon a new message forthcoming in the queue. Regarding polling of a queue two processing mechanisms can be used:

· Constant CSIMQGMO_NO_WAIT is related to first choice;

· While CSIMQGMO_ WAIT and value of WaitInterval set relate to second choice.

Whichever the choice taken, two precautions must be taken:

· “WaitInterval” cannot be set to CSIMQWI_UNLIMITED when “Options” has value CSIMQGMO_WAIT.

· When applicative polling is used (“Options” has value CSIMQGMO_NO_WAIT), then there must be a grace period foreseen in the application between two successive readings in the queue.

Value of argument “DataOut” represents the location of the data, when the value of the “MsgDesc.MsgType” is CSIMQMT_REQUEST or CSIMQMT_DATAGRAM. Otherwise (in the case of a CSIMQMT_REPORT) the CSIDD “DataOut” is left undefined (check this with the value of argument “MsgLen”, that must be 0L).

When a value for “DataOut” is defined, the attribute “Flags” of this CSIDD structure defines the way the information in CSIDD is to be represented.

Value of argument “MsgLen” represents the actual length in bytes of the application data in the retrieved message. It must be compared to the attribute “DataOut.DataLen”.

The argument “QoS” represents a CSIQOS structure that describes the particular handling that was applied on “DataOut”. Within this structure, only the “Priority” attribute is to be considered in order to satisfy to the Rule highlighted in IX.I.2.2.6.

IX.I.2.2.12.4 Browsing through a queue: HL_mq_browse()

CSILONG HL_mq_browse(

CSIMQHCONN
Conn,

CSIMQHOBJ
ObjDesc,

CSIMQMD
*MsgDesc,

CSIMQGMO
*GetMsgOpts,

CSIDD
*DataOut,

CSILONG
*MsgLen,

CSIQOS
*QoS,

CSILONG *ReturnCode,

CSILONG *ReasonCode

);

All arguments used in this verb are explained as for the HL_mq_get() verb.

The HL_mq_browse() verb does not delete the message read from the queue. An explicit use of the verb HL_mq_delete() is required for deleting it.

Within the “QoS” structure, only the “Priority” attribute is to be considered in order to satisfy to the Rule highlighted in paragraph.

IX.I.2.2.12.5 Deleting an element from a queue: HL_mq_delete()

CSILONG HL_mq_delete(

CSIMQHCONN
Conn,

CSIMQHOBJ
ObjDesc,

CSIMQMD
*MsgDesc,

CSIMQGMO
*GetMsgOpts,

CSIDD
*DataOut,

CSILONG

*MsgLen,

CSIQOS

*QoS,

CSILONG *ReturnCode,

CSILONG *ReasonCode

);

All arguments used in this verb are explained as for the HL_mq_browse() verb.

Important advice: a message may not be left indefinitely in a queue; it must be deleted at some time by using HL_mq_delete(). Otherwise, if the policy of the application is to neglect this message repeatedly, this message will always be in first position to be read after, hence will block the queue for reading any other message.

IX.I.3 Environment

Messages on CCN are always exchanged between Gateways. In EMCS, two kinds of Gateways have to be considered:

· National Gateways used by all the MSAs to perform EMCS business.

· Commission Gateways used by Taxation and Customs Union DG or its contractors to operate the EMCS or to develop the CDEA.

MSAs and Taxation and Customs Union DG always have two Gateways: the Operational Gateway and the Back-up Gateway. On every Gateway, Environments are defined comprising of a set of queues that can be considered as a ‘layer’ in which messages are exchanged. The Operational Gateway contains the Operational Environment. The Back-up Gateway contains the Common Domain Testing Environment and the National Testing Environment. The Gateways and the respective environments are defined as follows:
· The Operational Gateway contains the:
· The Operational Environment is used to exchange the messages in EMCS operations in Production Mode.
· The Back-up Gateway contains the:
· The Common Domain Testing Environment used to exchange messages for testing purposes on the Common Domain. This environment is used for National Compliance Testing (Mode-1) and Conformance Testing (Mode-2) with TA. This environment is also used for International Testing (Mode-3 and Mode-3+) between two or more countries.
· National Testing Environment, which is an optional environment, used to exchange messages in loopback mode so that messages are not exchanged on the Common Domain with other Gateways. This environment can be used for Integration Testing (Mode-0) with a National Excise Test Application
 (NETA) deployed at the premises of MSAs.
In every environment, queues have to be defined on the different Gateways. It has to be noted that messages should only be exchanged between queues belonging to the same Environment.

Every EMCS queue always has the following syntax:

<QUEUE NAME. XXXX@GATEWAY NAME>

Where “XXXX” is either “SEED” for SEED queues and “EMCS” for all other queues.

The queues can be divided in several groups based upon their function:

· ‘Core flow’ is used for the messages marked in Table 27.

· ‘Administration’ is used for the IE906 and IE917 refusal messages resulting from erroneous messages received from the ‘Core flow’ queue.

· ‘SEED’ is used for IE701, IE702, IE713, IE714, IE734, and IE917 messages exchanged with SEED. It should be noted that in case an NEA sends a syntactically invalid message to SEED, the NEA will receive the IE917 refusal message from the ‘SEED’ queue (i.e. the IE917 will not be received from the ‘Administration’ queue as it is the case for the syntactically invalid message exchanged via the ‘Core flow’ queue).
· ‘Reports’ is used for the CCN/CSI Reports (IE908, IE909, IE910 and IE911). The CCN/CSI reports are returned for every message type. It is received by a sending application in the queue that was indicated by the QoS "ReplyToQ" argument when sending the Information Exchange. It is highly recommended to request these reports in the associated REPORT queue. In this manner, pending reports can be recognised quickly and problems can be identified in a straightforward manner. It is recommended to use the REPORT queue solely for storing those CCN/CSI reports.

· ‘Technical Statistics’ is used for CCN/CSI technical statistics from CCN/TC.

· ‘Audit’ is used for CCN/CSI audit files from CCN/TC.

	IE
	IE Name
	Reference

	701
	Common Request
	C_REQ_SUB

	702
	Refusal of Common Request
	C_REQ_REF

	801
	E-AAD
	C_AAD_VAL

	802
	Reminder message for Excise movement
	C_EXC_REM

	810
	(Confirmation of) cancellation of e-AAD
	C_CAN_DAT

	813
	Change of Destination
	C_UPD_DAT

	818
	Accepted or Rejected report of receipt
	C_DEL_DAT

	821
	List of AAD as result of a general query
	C_LST_VAL

	829
	Notification of Accepted Export
	C_EXP_NOT

	837
	Explanation on Delay For Delivery
	C_DEL_EXP

	839
	Customs Rejection of e-AAD
	C_CUS_REJ

	904
	Status Request
	C_STD_REQ

	905
	Status Response
	C_STD_RSP

	934
	Data Packaging
	C_PAC_DAT

Table 27: Information Exchanges exchanged via the ‘Core flow’ queue
In the following chapters, the queues per environment are defined as well as the actual names for the queues and the Gateways. Chapter IX.I.3.1 defines the national queues and Gateways and Chapter IX.I.3.2 defines the Taxation and Customs Union DG queues and Gateways.
IX.I.3.1 National Gateways

IX.I.3.1.1 Queue Name

Every National Gateway has to be configured to contain the following queues as shown in Table 28:
	Mode
	Queue Function
	Queue Name

	Production
	Core flow
	CORE-XML-QUE.EMCS

	
	Administration
	ADMIN-XML-QUE.EMCS

	
	Reports
	REPORT-QUE.EMCS

	
	SEED
	NA-XML-QUE.SEED

	
	
	NA-REPORT-QUE.SEED

	
	Technical Statistics
	-

	
	Audit
	-

	Mode-3 and Mode-3+
	Core flow
	CORE-XML-RIT-QUE.EMCS

	
	Administration
	ADMIN-XML-RIT-QUE.EMCS

	
	Reports
	REPORT-RIT-QUE.EMCS

	
	SEED
	-

	
	Technical Statistics
	-

	
	Audit
	-

	Mode-2
	Core flow
	TA-NEA-CORE-XML-RCT-QUE.EMCS

	
	Administration
	TA-NEA-ADMIN-XML-RCT-QUE.EMCS

	
	Reports
	TA-NEA-REPORT-RCT-QUE.EMCS

	
	SEED
	NA-XML-RCT-QUE.SEED

	
	
	NA-REPORT-RCT-QUE.SEED

	
	Technical Statistics
	-

	
	Audit
	-

	Mode-1
	Core flow
	TA-NEA-ED-CORE-XML-RCT-QUE.EMCS

	
	Administration
	TA-NEA-ED-ADMIN-XML-RCT-QUE.EMCS

	
	Reports
	TA-NEA-ED-REPORT-RCT-QUE.EMCS

	
	SEED
	NA-XML-RCT-QUE.SEED

	
	
	NA-REPORT-RCT-QUE.SEED

	
	Technical Statistics
	-

	
	Audit
	-

	Mode-0
	Core flow
	CORE-XML-LCT-QUE.EMCS

	
	
	CORE-xx-LCT-QUE.EMCS

	
	Administration
	ADMIN-XML-LCT-QUE.EMCS

	
	
	ADMIN-xx-LCT-QUE.EMCS

	
	Reports
	REPORT-LCT-QUE.EMCS

	
	
	REPORT-xx-LCT-QUE.EMCS

	
	SEED
	NA-XML-LCT-QUE.SEED

	
	
	NA-XML-xx-LCT-QUE.SEED

	
	
	NA-REPORT-LCT-QUE.SEED

	
	
	NA-REPORT-xx-LCT-QUE.SEED

	
	Technical Statistics
	-

	
	Audit
	-

Table 28: Queue Names for National Gateways

Notes:

· In the above table, where “xx” can take the values 01 - 10 to indicate 10 different queues for use bya National Excise Test Application in National Testing environment.

· The queue names are applicable for EMCS.
· The report queues for Mode-1 and Mode-0 are optional.
IX.I.3.1.2 Gateway Site Names

The National Gateway Names (valid at the time of publication) are defined in Table 29:

	Country
	Gateway Name

	AT
	CUST.AT

	BE
	CUST.BE

	BG
	CUSTTAX.BG

	CY
	CUSTTAX.CY

	CZ
	CUST.CZ

	DE
	CUST.DE

	DK
	CUSTTAX.DK

	EC
	CCN.TC

	EC
	DGXXI.EC

	EE
	CUSTTAX.EE

	ES
	CUSTTAX.ES

	FI
	CUST.FI

	FR
	CUSTTAX.FR

	GB
	CUSTTAX.GB

	EL
	CUSTTAX.EL

	HU
	CUSTTAX.HU

	IE
	CUSTTAX.IE

	IT
	CUST.IT

	LT
	CUSTTAX.LT

	LU
	CUSTTAX.LU

	LV
	CUSTTAX.LV

	MT
	CUSTTAX.MT

	NL
	CUSTTAX.NL

	PL
	CUSTTAX.PL

	PT
	CUSTTAX.PT

	RO
	CUSTTAX.RO

	SE
	TAX.SE

	SI
	CUSTTAX.SI

	SK
	CUSTTAX.SK

Table 29: National Gateway names

IX.I.3.2 Taxation and Customs Union DG Gateways (DG TAXUD)

IX.I.3.2.1 Queue Name

The names of the Queues are defined as shown in Table 30:
	Mode
	Queue Function
	Queue Name

	Production
	Core flow
	-

	
	Administration
	ADMIN-XML-QUE.EMCS

	
	Reports
	REPORT-QUE.EMCS

	
	SEED
	CS-XML-QUE.SEED

	
	
	CS-REPORT-QUE.SEED

	
	Technical Statistics
	STAT-QUE.EMCS

	
	Audit
	AUDIT-QUE.EMCS

	Mode-3 and Mode-3+
	-
	

	Mode-2
	Core flow
	TA-CORE-role-XML-xx-RCT-QUE.EMCS

	
	Administration
	TA-ADMIN-role-XML-xx-RCT-QUE.EMCS

	
	Reports
	TA-REPORT-xx-RCT-QUE.EMCS

	
	SEED
	CS-XML-RCT-QUE.SEED

	
	
	CS-REPORT-RCT-QUE.SEED

	
	Technical Statistics
	STAT-RCT-QUE.EMCS

	
	Audit
	AUDIT-RCT-QUE.EMCS

	Mode-1
	Core flow
	TA-ED-CORE-role-XML-xx-RCT-QUE.EMCS

	
	Administration
	TA-ED-ADMIN-role-XML-xx-RCT-QUE.EMCS

	
	Reports
	TA-ED-REPORT-xx-RCT-QUE.EMCS

	
	SEED
	CS-XML-RCT-QUE.SEED

	
	
	CS-REPORT-RCT-QUE.SEED

	
	Technical Statistics
	STAT-RCT-QUE.EMCS

	
	Audit
	AUDIT-RCT-QUE.EMCS

	Mode-0
	-
	

Table 30: Queue Names for Taxation and Customs Union DG Gateways
In the above table:

· “role” is the roles for use by TA in Common Domain Testing environment defined in the TA SRD [R12]; and

· “xx” is a value for use by TA in Common Domain Testing environment defined in Table 31.

	Country
	xx

	CY
	01

	DE
	02

	EE
	03

	ES
	04

	IT
	05

	MT
	06

	NL
	07

	BG
	08

	CZ
	09

	AT
	10

	BE
	11

	SK
	12

	DK
	13

	FI
	14

	FR
	15

	GB
	16

	EL
	17

	HU
	18

	IE
	19

	LT
	20

	LU
	21

	LV
	22

	PL
	23

	PT
	24

	RO
	25

	SE
	26

	SI
	27

Table 31: National Gateway names
IX.I.3.2.2 Gateway Names

The Gateway name of the Taxation and Customs Union DG Gateways is always ‘DGXXI.EC’.

IX.I.3.3 Queue usage Overview

The following chapters provide an overview of the usage of the queues in the different environments by the EMCS.

In every figure, the left side is the EMCS and the right side shows the application with which it is communicating. To be noted:

If the CCN/CSI network is coloured grey, it indicates the Back-up Gateway has to be used. Otherwise, the Operational Gateway has to be used.

The queues that are coloured grey, are those defined at the Taxation and Customs Union DG Gateway. The others are defined at the NDEA Gateways.

IX.I.3.3.1 Operational Environment

The following diagrams graphically depict the normal operations of a NEA that interacts with another NEA or with the SEED.

The same sets of operations are foreseen for NEAs.

[image: image172.png]Core Core
Admin Admin
Report Report

Figure 118: Normal Operations with a NEA

[image: image173.png]SEED

SEED

Report

Report

Figure 119: Normal Operations with SEED

IX.I.3.3.2 Common Domain Testing Environment

The following diagrams graphically depict the operations for Conformance Testing of a NEA.

The same sets of operations are foreseen for NEAs.

[image: image174.png]core-rit

core-rit

admin-rit

‘admin-rit

report-rit

report-rit

Figure 120: International Testing with another NEA

[image: image175.png]core-rct

See CIRCA

admin-rct

See CIRCA

report-rct

See CIRCA

Figure 121: Conformance Testing

IX.I.4 Recommended Use of CCN/CSI

This section illustrates the use of CCN/CSI in a send and receives routine. This example is only a guide for implementation. It is up to each MSA to implement its routines for sending and receiving. The specifications of both routines show the general sequence of synchronous interaction between the application and the corresponding CSI component on the Gateway (“Remote API Proxy”).

The routines are specified in a C-like pseudo-code. The setting of a number of parameters of CSI verbs is not shown when these are not relevant for this explanatory purpose.

IX.I.4.1 Main routines

Typical execution phases are as follows:

1. Program Connection phase:

· Program binding to the CSI stack (HL_bind).

· Establishment of a security context (HL_init_sec_context).

· Connection to the local Queue Manager (HL_mq_conn).

2. Sending phase:

· Opening of a message queue with the appropriate options (HL_mq_open).

· Encode the data descriptor passed by the application into another data descriptor, which will be handled by the Sending function, by using a Presentation profile which corresponds to the Information Exchange type (HL_encode).

· Send a message to a remote queue that has been opened for output (HL_mq_put). If a queue has not yet been opened, the verb HL_mq_put1 can be used. This latter verb also implies closing the queue after inserting the message into it.

· Closing the opened message queue (HL_mq_close).

3. Receiving phase:

· Opening of a message queue with the appropriate options (HL_mq_open).

· Destructive extraction of a message from a local queue (HL_mq_browse, HL_decode, and HL_mq_delete). This sequence of verbs is recommended, rather than the verb HL_mq_get, to overcome deletion of a message if it does not fit in a memory buffer.

· Decode the received data descriptor into another data descriptor, for application usage. No application profile is to be communicated to this verb. This verb checks the correctness of the CodePage and HostFormat used.

· Closing the opened message queue (HL_mq_close).

4. Program Disconnection phase:

· Disconnection from the Queue Manager (HL_mq_disc).

· Destruction of the security context (HL_delete_sec_context).

· Disconnection from the CSI stack (HL_unbind).

These four execution phases can be executed in a sequence as is for instance shown by next figure. Other sequences are also possible, e.g. parallel sending and reception of messages or parallel sending of messages to different queues. Another option is to combine the Sending and Receiving phases into one routine. This routine may first send and secondly read messages out of queues.

It is recommended to distinguish between priorities in sending and receiving, e.g. first browsing a queue for high priority messages before the messages with normal priority are received from the same queue.

For reception, all available queues for reading identified via the Access Control List need to be browsed. A sequence of browsing and reading is up to each application developer.

[image: image176.wmf]Program

Connection

start

send/

receive/

disconnect?

Send

Program

Disconnection

Receive

disconnect

end

receive

send

Encode

Decode

Figure 122: A possible sequence for using CSI verbs

Message queue opening and closing and queue access verbs, as shown in the Sending and Receiving phases, can be inter-mixed in any sequence with the restriction that queues must be properly opened before messages can be written to or read from it.

All program interactions are with the local Queue Manager running in the local CCN gateway. As a consequence, the transmission and processing delays do not slow sending or receiving programs and the response times are significantly improved.

Errors related to the use of CCN/CSI are specified in the appropriate CCN/CSI documentation. They have to be handled by an application program connecting to the CSI stack.

The next examples use the arguments (CSILONG) pReturnCode, pReasonCode as output parameters of a CSI verb. The first indicates success or failure and, in case of failure, the second gives the reason for failure. Working code should check these values after every CCN/CSI call.

IX.I.4.2 Program connection

The following pseudo-code is given for connection of an application named “NEA” to the CCN Gateway.
Connect (out MQHCONN, Returncode)

· The result of the connect is an identifier that needs to be used for sending, receiving, and disconnecting a session with the CCN Gateway (MQHCONN). The result of the execution of this routine is given in Returncode. Errors for executing verbs can possibly be hidden in the connect routine by retrying to connect to the Gateway more than once. Some errors, e.g. there is no validated user password, which require a systems administrator to take action, need to be passed to the application.

HL_bind (in “NEA”, “”, out CSIQOS, pReturnCode, pReasonCode)

· “NEA” is now bound to the CSI stack. Default ProxyName was used (the empty string “”).

· Default QoS for “NEA” is returned by the Gateway in parameter CSIQOS.

· The first CSILONG indicates the success or failure of the verb execution, whereas the second specifies an error reason. If CSILONG indicates a failure, a retry of Connect may be tried, depending on the error reason.

· The application is in charge of obtaining security credentials: UserName equals “NEA” and, “UserPassword” and “ApplicationKey” have to be valid parameter values checked by the CCN Gateway. The variable SecurityInfo, with type CSISECINFO, has been filled as explained above in paragraph IX.I.2.2.9.

HL_init_sec_context (in SecurityInfo, out pReturnCode, pReasonCode)

· Security context between Application Platform and CCN gateway is established. If the security context could not be established, the CSILONG parameters contain the success or failure with the associated reason. The application key and username is checked by the X.500 directory of the Gateway. Both parameters need to be known to the application.

HL_mq_conn (in Mqman, out MQHCONN, pReturnCode, pReasonCode)

· Application is connected to the message queue management system identified by Mqman. The Gateway returns the status of the execution of the verb and an identifier to be used during exchange of information between the “NEA” and the Gateway (MQHCONN).

IX.I.5 Configuration Information

IX.I.5.1 Introduction

This chapter presents the steps that need to be performed in order to set up the parameters on the CCN Gateways.

This chapter is divided into:

· The information to be prepared by a MSA for all objects that are specific to each MSA.

· The information to be prepared by EMCS-CO and that are required to ensure end-to-end interoperability.

Chapter 5 of document [R8] presents a Responsibility Model that distributes the choices to be taken between several roles. The roles applicable for EMCS are:

· CDIA: the CCN/TC Directory Administrator, responsible for the central management of the CCN directory.

· CASO: the Central Application Security Officer, responsible for security issues that concern a given application of the Taxation and Customs Union DG, running over the CCN/CSI system. This is actually the EMCS-CO.

· CSO: CCN-TC Central Security Officer.

· LAD: a Local Application Designer, responsible for the design of a NDEA program. In the case of a CDEA, the contractor designer has to further subdivide the design issues between what the CDEA was able to decide and what is left to the MSA development to decide.

· LSO: the Local Security Officer, responsible for security issues for a NDEA.

· LSYA: the Local System Administrator for the NDEA infrastructure, responsible for the system management.

· LAA: the Local Application Administrator for the NDEA infrastructure, responsible for the management of the CCN directory data related to the local users of NDEA: this amounts to maintaining the list of UserIds with respect to UserProfiles.

IX.I.5.2 Configuration information to be provided by the MSA

Security aspects for EMCS are defined in [R2] and [A10].

Concerning CCN/CSI exchanges, a number of standard security features of the CCN/CSI network will be used. The MSA only needs to set up the proper security configuration on their gateways, in co-ordination with the CCN/TC. For CCN/CSI exchanges, document [A7] is containing additional information on security aspects.

IX.I.5.2.1 Collection of External Configuration Data

The words ‘Entity’ and ‘Attributes’ used in Table 32 refer to the ERD defined in [R8].

The associated values depend on the technical infrastructure that exists within a MSA.

These values have to respect the “Formatting Rules” defined in heading 5.3 of [R8].

The values have to be entered onto forms in Annex C of [R8].

It is necessary to cooperate with EMCS-CO for the practical handling of these forms as shown in Table 32.

	Entity
	Attribute
	Provided by
	Managed by

	Application
	ccnApplicationName
	LAD
	CDIA

	
	ccnApplicationType
	LAD
	CDIA

	
	ccnAddress
	LAD
	CDIA

	
	ccnAddressType
	LAD
	CDIA

	
	ccnAuthorizedSecurityMechanisms
	LAD
	CDIA

	
	ccnDefaultSecurityMechanisms
	LAD
	CDIA

	
	ccnDataRepresentationRules
	LAD
	CDIA

	
	ccnDefaultCodePage
	LAD
	CDIA

	
	ccnApplicationActivationMode
	LAD
	CDIA

	
	ccnApplicationExchangeMode
	LAD
	CDIA

	
	ccnConversationalModeEnabled
	LAD
	CDIA

	
	ccnApplicationSecurityKey
	LSO
	LSA or LAA

	
	ccnDefaultQOS
	LAD
	CDIA

	
	ccnOperationalStatus
	LSYA
	CDIA

	
	ccnPlatformName
	LAD
	CDIA

	
	ccnRAPName
	LAD
	CDIA

	Platform
	ccnPlatformName
	LAD
	CDIA

	
	ccnAddress
	LAD
	CDIA

	
	ccnAddressType
	LAD
	CDIA

	
	ccnAuthorizedSecurityMechanisms
	LAD
	CDIA

	
	ccnDefaultSecurityMechanisms
	LAD
	CDIA

	
	ccnDataRepresentationRules
	LAD
	CDIA

	
	ccnDefaultCodePage
	LAD
	CDIA

	
	ccnOperationalStatus
	LSYA
	CDIA

	Queue
	ccnQueueName
	LAD
	CDIA

	
	ccnTriggerEnabled
	LAD
	CDIA

	
	ccnTriggerType
	LAD
	CDIA

	
	ccnMaxQueueDepth
	LAD
	CDIA

	
	list of ccnApplicationName
	LAD
	CDIA

	Remote API Proxy
	ccnRAPName
	LAD
	CDIA

	
	ccnMinNbOfRAPInstances
	LAD
	CDIA

	
	ccnMaxNbOfRAPInstances
	LAD
	CDIA

	User
	ccnUserName
	LSO
	LSA or LAA

	
	ccnUserPassword
	LSO
	LSA or LAA

	
	ccnUserDisabled
	LSO
	LSA or LAA

	
	ccnOrganisationName
	LSO
	LSA or LAA

	
	list of ccnUserProfileId
	LSO
	LSA or LAA

Table 32: External Configuration Data defined by MSA

IX.I.5.2.2 Message configuration procedure

The general message configuration procedure is performed by EMCS-CO.

Note that the information ‘ccnDataRepresentationRules’ and ‘ccnDefaultCodePage’ presented in paragraph IX.I.5.2.1 will be used by the CCN Technical Centre to generate files specific to the NDEA development.

IX.I.5.3 Configuration information to be provided by the EMCS-CO

IX.I.5.3.1 Collection of External Configuration Data

	Entity
	Attribute
	Provided by
	Managed by

	Application
	ccnDefaultQOS
	LAD-CAD
	CDIA

	CCN/CSI organisation
	ccnOrganisationName
	CDIA
	CDIA

	CCN gateway
	ccnGatewayName
	CDIA
	CDIA

	Message
	ccnMessageId
	CAD
	CDIA

	
	ccnMessageFormalDefinition
	CAD
	CDIA

	Queue
	list of ccnUserProfileId
	CASO
	CSA

	
	list of ccnUserProfileId
	CASO
	CSA

	
	ccnGatewayName
	CAD
	CDIA

	Remote API Proxy
	ccnGatewayName
	CAD
	CDIA

	User profile
	ccnUserProfileId
	CASO
	CSA

Table 33: External Configuration Data defined by EMCS-CO

The attributes values to be configured on EMCS-wide scale by EMCS-CO are detailed below.

IX.I.5.3.1.1 ccnDefaultQOS

As explained in the value configured on all Gateways for all applications may be overridden upon each call (HL_mq_put() or HL_mq_put1()) performed by an application. The values from Table 34 will be entered into CCN/CSI application configuration form-part 4:

	Configuration of default QoS

	Priority:
	5

	ReportRequest:
	Exception

Expiration

Confirm on Arrival

Confirm on Delivery

PassMessageId

PassCorrelId

	ReplyToQ:
	left empty

	Integrity:
	Forbidden

	Confidentiality:
	Forbidden

	Compression:
	Forbidden

	CompressionId:
	LZW

	DegradedMode:
	NotAllowed -- N/A anyway

	CoT:
	DEFAULTCOT

Table 34: Configuration of default QoS

IX.I.5.3.1.2 ccnGatewayName

See Table 33.

IX.I.5.3.1.3 ccnOrganisationName

See Table 32 and Table 33.

IX.I.5.3.1.4 ccnMessageId

· “CD701A-MSG.emcs”

· “CD702A-MSG.emcs”

· “CD713A-MSG.emcs”

· “CD714A-MSG.emcs”

· “CD734A-MSG.emcs”

· “CD801A-MSG.emcs”

· “CD802A-MSG.emcs”

· “CD803A-MSG.emcs”

· “CD810A-MSG.emcs”

· “CD813A-MSG.emcs”

· “CD818A-MSG.emcs”

· “CD821A-MSG.emcs”
· “CD829A-MSG.emcs”
· “CD837A-MSG.emcs”
· “CD839A-MSG.emcs”
· “CD904A-MSG.emcs”

· “CD905A-MSG.emcs”

· “CD934A-MSG.emcs”

· “CD906A-MSG.emcs”

· “CD917A-MSG.emcs”

IX.I.5.3.1.5 ccnMessageFormalDefinition

See paragraph IX.I.5.3.2.

IX.I.5.3.1.6 ccnUserProfileId

Syntax for defining the ccnUserProfileId is:

[UserProfileId][ApplicationModeSuffix]-PRF. XXXX
Where “XXXX” is either “SEED” for SEED profiles and “EMCS” for all other profiles.
The names of the UserProfileId per queue are defined as shown in Table 35 (for more information regarding queues please refer to Section IX.I.3 Environment). For detailed implementation of the UserProfileIds for SEED and TA, please refer to the corresponding CTODs (Conformance Test Organisation Documents).
	Queue Name
	CCN profile
	Access

	CORE-XML-QUE.EMCS
	CORE-XML-PRF.EMCS
	R/W

	ADMIN-XML-QUE.EMCS
	ADMIN-XML-PRF.EMCS
	R/W

	REPORT-QUE.EMCS
	REPORT-PRF.EMCS
	R/W

	NA-XML-QUE.SEED
	NDEA-XML-PRF.SEED
	R

	CS-XML-QUE.SEED
	NDEA-XML-PRF.SEED
	W

	NA-REPORT-QUE.SEED
	NA-REPORT-PRF.SEED
	R

	CS-REPORT-QUE.SEED
	NA-REPORT-PRF.SEED
	W

	CORE-XML-RIT-QUE.EMCS
	CORE-XML-RIT-PRF.EMCS
	R/W

	ADMIN-XML-RIT-QUE.EMCS
	ADMIN-XML-RIT-PRF.EMCS
	R/W

	REPORT-RIT-QUE.EMCS
	REPORT-RIT-PRF.EMCS
	R/W

	TA-NEA-CORE-XML-RCT-QUE.EMCS
	TA-READ-RCT-PRF.EMCS
	R

	TA-CORE-role-XML-xx-RCT-QUE.EMCS
	TA-WRITE-RCT-PRF.EMCS
	W

	TA-NEA-ADMIN-XML-RCT-QUE.EMCS
	TA-READ-RCT-PRF.EMCS
	R

	TA-ADMIN-role-XML-xx-RCT-QUE.EMCS
	TA-WRITE-RCT-PRF.EMCS
	W

	TA-NEA-REPORT-RCT-QUE.EMCS
	TA-READ-RCT-PRF.EMCS
	R

	TA-REPORT-xx-RCT-QUE.EMCS
	TA-WRITE-RCT-PRF.EMCS
	W

	NA-XML-RCT-QUE.SEED
	NDEA-RCT-PRF.SEED
	R

	CS-XML-RCT-QUE.SEED
	NDEA-XML-RCT-PRF.SEED
	W

	NA-REPORT-RCT-QUE.SEED
	NDEA-RCT-PRF.SEED
	R

	CS-REPORT-RCT-QUE.SEED
	NA-REPORT-RCT-PRF.SEED
	W

	TA-NEA-ED-CORE-XML-RCT-QUE.EMCS
	TA-READ-RCT-PRF.EMCS
	R

	TA-ED-CORE-role-XML-xx-RCT-QUE.EMCS
	TA-WRITE-RCT-PRF.EMCS
	W

	TA-NEA-ED-ADMIN-XML-RCT-QUE.EMCS
	TA-READ-RCT-PRF.EMCS
	R

	TA-ED-ADMIN-role-XML-xx-RCT-QUE.EMCS
	TA-WRITE-RCT-PRF.EMCS
	W

	TA-NEA-ED-REPORT-RCT-QUE.EMCS
	TA-READ-RCT-PRF.EMCS
	R

	TA-ED-REPORT-xx-RCT-QUE.EMCS
	TA-WRITE-RCT-PRF.EMCS
	W

	CORE-XML-LCT-QUE.EMCS
	CORE-XML-LCT-PRF.EMCS
	R

	CORE-xx-LCT-QUE.EMCS
	CORE-xx-LCT-PRF.EMCS
	W

	ADMIN-XML-LCT-QUE.EMCS
	ADMIN-XML-LCT-PRF.EMCS
	R

	ADMIN-xx-LCT-QUE.EMCS
	ADMIN-xx-LCT-PRF.EMCS
	W

	REPORT-LCT-QUE.EMCS
	REPORT-LCT-PRF.EMCS
	R

	REPORT-xx-LCT-QUE.EMCS
	REPORT-xx-LCT-PRF.EMCS
	W

	NA-XML-LCT-QUE.SEED
	NA-XML-LCT-PRF.SEED
	R

	NA-XML-xx-LCT-QUE.SEED
	NA-XML-xx-LCT-PRF.SEED
	W

	CS-XML-LCT-QUE.SEED
	NDEA-XML-LCT-PRF.SEED
	W

	NA-REPORT-LCT-QUE.SEED
	NA-REPORT-LCT-PRF.SEED
	R

	NA-REPORT-xx-LCT-QUE.SEED
	NA-REPORT-xx-LCT-PRF.SEED
	W

	CS-REPORT-LCT-QUE.SEED
	NA-REPORT-LCT-PRF.SEED
	W

Table 35: List of user profiles
In the above table “xx” can take the value 01 - 10 to indicate 10 different queues.

IX.I.5.3.2 Message configuration procedure for EMCS

Table 36 is the IDL definition for all EMCS messages exchanged over the Common Domain that have a relevant message body: the list of these messages is in Table 22. The report messages have not to be defined with an IDL description.

The EMCS-CO must have this IFL definition compiled by the CCN-TC service and must forward to each MSA the files obtained from this compilation. Section 6 of document [R8] has to be followed for this process.

/* CCNIDL definition of EMCS messages for Phase 2 */

[version (1.0)]

interface CD701A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD702A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD713A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD714A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD734A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD801A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD802A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD803A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD810A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD813A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD818A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD821A-MSG.emcs

{

typedef byte RawBuffer ;

}
interface CD829A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD837A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD839A-MSG.emcs

{

typedef byte RawBuffer ;

}
interface CD904A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD905A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD934A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD906A-MSG.emcs

{

typedef byte RawBuffer ;

}

interface CD917A-MSG.emcs

{

typedef byte RawBuffer ;

}
Table 36: IDL definition of CCN messages for EMCS

Section X Transport of Messages via SOAP/HTTP

This chapter defines the transport of messages via SOAP/HTTP that can be used by a MSA to invoke the Common Domain Central Services web services. It is decomposed in seven sub-sections:

The first section discusses the network topology that enables MSA client and the Common Domain Central Services interaction over SOAP/HTTP.

The second section details the CCN configuration and related responsibility model and procedures.

The third section provides a brief introduction to the standards that are applicable to web service invocation over SOAP/HTTP: SOAP, HTTP, XML-RPC, WSDL, WS-Security and UDDI. The fourth section ‘Recommended Usage’ provides an explanation of how a MSA should use Common Domain Central Services web services:

· The “SOAP Message Structure” to create;

· The “SOAP Message Exchange Patterns” to be used;

· How a MSA must invoke web services of Central Services over SOAP/HTTP.

The last two sections outline two important features of web services that are relevant to the SOAP/HTTP transport: “Web Service Transactions” and “Web Service Security”.

Sub-Section X.I Topology

X.I.1 HTTP Transport

The topology of the HTTP transport over CCN can be represented as follows:

[image: image177.wmf]

MSA

Centr

al

Servic

es

Web Services

GW

GW

CCN Backbone

Apache Proxy

Apache Proxy

HTTPS

HTTP

National

Domain

Common

Domain

National

Network

HTTP

HTTP

Figure 123: HTTP over CCN Transport Topology

SOAP is the message format used in the invocation of Central Services web services over a HTTP transport. SOAP messages created by MSAs are sent via HTTP over CCN through the Gateways Apache Proxies, to Central Services Web Services.

X.I.2 Uniform Resource Identifier

Common Domain Central Services web services are located by URIs. Following the generic syntax or URIs, the derived syntax for each Common Domain Central Services web service is defined as follows:

	<scheme>://<server>:<port>/<path>

Where:

· <scheme> is always “http” or “https” - only SOAP/HTTP is supported by Central Services;

· <server> is an environment specific logical name that identifies a HTTP server. See sub-section “Environments” below for more details;

· <port> represents the TCP/IP port that the HTTP transport runs over. As with the <server> element, the HTTP port varies between “Environments”;

· <path> represents a relative path to the Central Services web service resource.

Section X.I.3 below discusses the environments that support for the SOAP/HTTP transport, including the environment specific values for <server> and <port>.

It also lists the relative URIs for each Central Services web service and specifies the values for the <path> element - “<WebApp>/<RelativePath>/<WebService>.ws” - that does not change between environments.

X.I.3 Environments - Web Service Relative Path

The Web Service relative path - that is, the value for <path> in the full URI syntax is defined by the following syntax:

<path> ::= <WebApp>/<RelativePath>/<WebService>

Where:

· <WebApp> is the name of the Central Services web services web application;

· <RelativePath> is a logical path relative to <WebApp>;

· <WebService> is the name of the Central Services web service.

Web Service relative path do not change between environments.
	Process Area
	Web Services
	Relative URI

	Reference Data
	Re-synchronisation of Reference data
	/CentralServicesWS/SEED/RetrieveOrExtractEntity.jws

	SEED data
	Re-synchronisation of SEED data
	/CentralServicesWS/SEED/RetrieveOrExtractEntity.jws

	
	Dissemination of SEED data (Reception of Updates from the MSAs)
	/CentralServicesWS/SEED/MaintainEntity.jws

Table 37: Central Services Web Service Relative URIs by Processing Area

Here are some examples of Central Services web service URIs:

· http://cs.dgtaxud.ec/CentralServicesWS/SEED/RetrieveOrExtractEntity.jws
Sub-Section X.II CCN Configuration

The CCN configuration data to provide are the list of user profiles and the URIs accessible by these profiles through CCN/HTTP. This configuration is required both for Web Services access and for access to the Web interface of the application.

X.II.1 Responsibility Model

The following roles are defined for the provisioning of the CCN/HTTP attribute value(s):

· Central Application Designer (CAD), responsible for the design of a given DG TAXUD application running over the CCN/CSI system;

· Local Security Officer (LSO), responsible for security issues within a given CCN/CSI organisation.

The following roles are defined for the management of the attribute value(s), i.e. for the registration/modification of the attribute value(s) in the CCN directory:

· CCN-TC Directory Administrator (CDIA), responsible for the central management of the CCN directory.

X.II.2 CCN/HTTP Configuration Data

For each environment, there are five profiles defined for MSAs
:

· ELO: An ELO has access to the maintenance of the economic operators of its MS;

· ADM: Administrators maintain the notification profiles of the users of their MSA;

· READ: Read-only users may only read the information;

· WS-ELO: This profile gives access to the Web Services for maintenance of economic operators;

· WS-READ: This profile gives read-only access to the Web Services.

The following profiles have to be defined on National Gateways to control the access to SEED Web Services:
	ccnUserProfileId

	WS-ELO-PRF.SEED

	WS-READ-PRF.SEED

	WS-ELO-RCT-PRF.SEED

	WS-READ-RCT-PRF.SEED

	WS-ELO-RST-PRF.SEED

	WS-READ-RST-PRF.SEED

Table 38: User Profiles for National Gateways access to Central Services Web Services

The following profiles have to be defined on National Gateways to control the access to the SEED Web interface:

	ccnUserProfileId

	ELO-PRF.SEED

	READ-PRF.SEED

	ADM-PRF.SEED

	ELO-RCT-PRF.SEED

	READ-RCT-PRF.SEED

	ADM-RCT-PRF.SEED

	ELO-RST-PRF.SEED

	READ-RST-PRF.SEED

	ADM-RSTPRF.SEED

Table 39: User Profiles for National Gateways Access to Central Services Web interface

The following profiles have to be defined on DG TAXUD Gateways to control the access to SEED Web Services:

	ccnUserProfileId

	WS-ELO-LCT-PRF.SEED

	WS-READ-LCT-PRF.SEED

Table 40: User Profiles for DG TAXUD Gateway Access to Central Services Web Services

The following profiles have to be defined on DG TAXUD Gateways to control the access to the SEED Web interface:

	ccnUserProfileId

	ELO-LCT-PRF.SEED

	READ-LCT-PRF.SEED

	ADM-LCT-PRF.SEED

Table 41: User Profiles for DG TAXUD Gateway Access to Central Services Web interface

X.II.3 CCN/HTTP Configuration Procedure

The overall procedure for the configuration of CCN/HTTP is resumed by the following points:

1. The Central Application Designer creates configuration forms for the Central Services application;

2. The Central Application Designer sends the forms to the CCN-TC;

3. The CCN-TC configures the DG TAXUD and National Gateways.

For the MSA that opts for the additional WS-security, the overall procedure for the configuration of WS-security is resumed by the following points:

1. The Local Security Officer of the MSA sends its NDEA public Key to EMCS-CO;

2. The Central Security Officer of EMCS-CO replies with the Central Services public key.

Sub-Section X.III Web Service Standards

Any MSA that interacts with web services of Central Services should conform to the following web service standards: SOAP, HTTP, XML-RPC, WSDL and WS-Security. This section specifies which version of the standard has to be supported by any MSA. It also gives a brief introduction to these standards.

X.III.1 HTTP

The version of HTTP supported is HTTP/1.1.

X.III.2 SOAP

SOAP is a format for transmitting data and web service invocation calls between two SOAP nodes - a SOAP sender and SOAP receiver, as shown below:

[image: image178.emf]«SOAP Node»

/ SOAP Receiver

«SOAP Node»

/ SOAP Sender

/ SOAP Message

1 : \create\

soapRequestMessage

2 : \sendSOAPMessage\ (\soap

Message\)

3 : \create\

soapResponseMessage

soapResponseMessage

Figure 124: Generic SOAP Interaction

In the basic form of interaction, SOAP is a synchronous, one-way communication between a SOAP Sender and SOAP Receiver. However, as the diagram shows these one-way interactions may be combined in different SOAP message exchange patterns. The SOAP Receiver may, therefore, also perform the role of a SOAP Sender by sending a SOAP response to a SOAP request.

The versions of SOAP supported by the web services of Central Services are:

· SOAP 1.1;

· SOAP 1.2.

It is recommended that any MSA that will be a client of the web services conforms to the SOAP 1.2 standard. This is primarily because SOAP 1.2 has clearer semantics, in addition to a number of significant syntax changes, for example in relation to HTTP binding.

X.III.2.1 Encoding Style

SOAP supports two encoding styles for invocation of web services: Document Literal or SOAP RPC (Remote Procedure Call) encoding:

· In the Document Literal encoding style, a XML message is wrapped inside the SOAP envelope;

· The SOAP RPC encoding style defines a uniform representation of a RPC-like request/response interaction.

The Document Literal style is more flexible in that custom XML messages may be defined to be wrapped by the SOAP Envelope. In the context of EMCS, this means the existing message format used for XML/CSI interaction may be re-used for SOAP/HTTP invocation of the web services.

It is mandatory that any MSA that will be a client of the web services conforms to the SOAP Document Literal encoding style.

X.III.3 WSDL

WSDL (Web Services Description Language) defines “a XML grammar for describing network services as collections of communication endpoints capable of exchanging messages”. WSDL describes web service operations, parameters and how a client connects to a web service.

The version of WSDL supported by the web services of Central Services is WSDL 1.1. The WSDL for these web services are included in the Appendix I.

X.III.4 UDDI

UDDI (Universal Description, Discovery and Integration) is a standard for description and discovery of registered web services in a known repository.

Central Services will not support dynamic discovery of web services. That is, the WSDL for the web services will not be published in a UDDI repository for discovery by MSA clients. This is because the UDDI registry would have to be secured and client invocation would be slower if the WSDL for these web services is stored in an UDDI repository.

X.III.5 WS-Security

The specific features of WS-Security and the implications for any MSA wishing to improve security are further defined in the Sub-Section X.VI “Web Service Security” below.

Sub-Section X.IV Recommended Usage

This section explains the requirements for a MSA that communicates with the web services over the SOAP/HTTP transport.

The first chapter details the SOAP message structure.

The second chapter discusses the asynchronous modes of interaction between a MSA and the web services of Central Services. Specifically, this sub-section details how a MSA and Central Services may interact asynchronously through a SOAP conversation, and how the MSA should handle exceptions thrown by a web service.

X.IV.1 SOAP Message Structure

The structure of a SOAP 1.2 message that is transmitted between SOAP nodes (web service client and receiver) is a SOAP Envelope that wraps the Central Services XML message format (IEs). The next sections specifies this SOAP Envelope, details the relationship between this SOAP Envelope and the XML format, and gives examples of the SOAP message structure that the MSA client must send to the web services.

X.IV.1.1 SOAP 1.2 Envelope

The figure below illustrates the SOAP 1.2 Envelope:

[image: image179.jpg]B atiributes

"y #other

B atiributes

"y Fother

B atiributes

"y Fother

Figure 125: SOAP 1.2 Envelope

The SOAP Envelope is composed of a Header and a Body element. Both elements are extensible as the XML Schema for the envelope specifies that both the Header and Body elements may contain any other element. For example, this is expressed in XML Schema through the use of the <xs:any> type, as shown in the following excerpt for the <tns:Body> element:

<xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded" />
This means any element from any namespace may be contained by the SOAP Envelope body schema in an instance of a SOAP message. It is this flexibility that makes the Document encoding style possible, so that XML messages specific to Central Services can be contained by the SOAP body element.

X.IV.1.2 SOAP Body

The relationship between the SOAP Envelope and Central Services XML is dependent on the mode - asynchronous or synchronous - of message exchange. For the synchronous message exchanges the messages are contained in the body element of the SOAP Envelope. For the asynchronous message exchanges the messages are contained as attachments following the W3C recommendations, XML-binary Optimized Packaging (XOP) [S19] and SOAP Message Transmission Optimisation Mechanism [S20].
In the Document Literal encoding style, the operation invoked appears as an element contained by the <SOAP-ENV:Body> element. For example, the XML shown below is an excerpt from a SOAP request to the dissemination of SEED data operation of the ‘MaintainEntity’ web service:
	<?xml version="1.0" encoding="UTF-8" ?>

<!--

 MaintainEntity Service

 Operation: startEntityAction

 Attachment: IE713:C_QRO_DAT

-->

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <StartHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

 <conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

 </StartHeader>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <startEntityAction xmlns="http://emcs.dgtaxud.ec/webservice/types" />

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The parameters of the operation are contained by the <startAction> element. As shown above, the operation element also contains the namespace declarations for the custom Central Services XML Schemas such as

<startEntityAction xmlns="http://emcs.dgtaxud.ec/webservice/types" />
which identifies the Central Services excise domain schema.

MSA clients of Central Services web services should respect this style of encoding of SOAP requests. This is usually achieved through the use of developments tools, such as Microsoft Visual Studio.NET, that enable request creation dynamically given a web service WSDL file.

X.IV.2 SOAP Message Exchange Patterns

The Central Services supports the SOAP conversation specification, which is a set of SOAP headers, a protocol, and WSDL definitions designed to support asynchronous and conversational messaging over SOAP/HTTP.

All Central Services web services support asynchronous conversations. This is because they must support bulk validation, modification and download of multiples excise entities and such operations have the potential to take longer than the timeout for a HTTP request.

X.IV.2.1 Asynchronous Message Exchange

In asynchronous exchange of messages, it is necessary for the SOAP client and server (or web service) to manage long-lived conversations over a period of time. To enable subsequent communication between SOAP nodes, a unique identifier or “conversation id” should be passed between the nodes when the conversation starts. Central Services uses a SOAP extension called the SOAP Conversation Protocol 1.0 to embed this identifier in the header element of the SOAP Envelope.

This imposes two requirements on any MSA that will interact with the asynchronous web services, specifically:

· A MSA that interacts with the asynchronous web services should supply a conversation id that is globally unique, e.g., a Globally Unique Identifier (GUID), a Uniform Resource Locator (URL) or a secure random number. This conversation identifier should be embedded in the SOAP Envelope Header element in every request to invoke an asynchronous operation;

· The MSA must poll the web service to get the current status of the requested entity action.

The general sequence of interaction for asynchronous message exchange with a web service is show in the figure below:

[image: image180.wmf] : MSA Central Services

 : MSA Central Services

 : CD Central Services

 : CD Central Services

1: startAction ('startAction' entity)

2: 'startActionResponse'entity

3: getActionStatus ('getActionStatus' entity)

4: 'getActionStatusResponse' entity (actionCompleted=false)

7: terminateAction ('terminateAction' entity)

8: 'terminateActionResponse' entity

5: getActionStatus ('getActionStatus' entity)

6: 'getActionStatusResponse' entity (actionCompleted=true)

Start Phase

Continue Phase

Finish Phase

Figure 126: SOAP Conversation Phases

As the diagram shows, there are three phases in the SOAP conversation: start, continue and finish. In the start conversation phase, the MSA should send a ‘StartHeader’ entity (element) inside the SOAP Envelope Header element in the request to invoke the ‘startAction’ operation. The ‘startHeader’ entity contains the conversation identifier (conversationID) generated by the MSA client:

	<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Header>

<StartHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

<conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

</StartHeader>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

…

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In the continued conversation phase, the MSA must send a ‘ContinueHeader’ in any SOAP message to invoke the polling operation ‘getActionStatus‘. The ‘ContinueHeader’ should contain the same ‘conversationID’ value originally sent in the ‘StartHeader’ element.

For example:

	<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Header>

<ContinueHeader xmlns="http://www.openuri.org/2002/04/soap/conversation/">

<conversationID>9E6EEAE9-E64E-40f2-85FF-A2CD8E35F6D0</conversationID>

</ContinueHeader>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

…

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The polling operation may be invoked multiple times, each time with the same ‘ContinueHeader’.

To terminate a conversation, the MSA must invoke the ‘terminateAction’ operation of the web service. In the SOAP message request to invoke ‘terminateAction’, the same ‘ContinueHeader’ should also be sent in the SOAP Envelope Header: in the chosen SOAP Conversation protocol, there is no equivalent of a stop or terminate header.

X.IV.2.1.1 Conversation Lifetime

The duration of a SOAP Conversation is not unlimited. There are two specific attributes that control the lifetime of a SOAP Conversation. These are presented in the table below:
	Attribute
	Value
	Type

	Max-age
	24
	Hours

	Max-idle-time
	1
	Hour

Table 42: SOAP Conversation Lifetime Attributes

The “max-age” attribute controls the overall lifetime of a conversation. In Central Services, the “max-age” of the web services is set to 24 hours, after which the conversation terminates.

The “max-idle-time” attribute controls the time between invocations of a web service for the same conversation. The “max-idle-time” of the SOAP conversation is set to one hour, after which the conversation terminates.

If any operation is invoked by the MSA after the conversation has ceased, the server throws a SOAP Fault (see 0 “Exception Handling” below) back to the MSA client. The SOAP Fault specifies that the SOAP Conversation identified by the ‘conversationID’ sent in a ‘ContinueHeader’ has terminated.

At this point, the MSA may start a new conversation by sending a ‘StartHeader’ containing a new ‘conversationID’ with the SOAP request to invoke the ‘startAction’ operation. Once the new conversation has started, the MSA may call the polling operation ‘getActionStatus’ to get the result of the entity action.

X.IV.2.2 Exception Handling

The MSA client should be able to handle exceptions thrown by a web service of the Central Services. There are three kinds of exceptions that are possible:

· System exceptions occur when there is a network timeout or the web service is unavailable and are generated by the XML-RPC module of the MSA. The management of System exceptions is left to the discretion of the MSA implementation;

· Service exceptions that are application specific and generated by a web service if some parameters in a SOAP request are invalid or, alternatively, if the internal state of the web service is inconsistent. Service exceptions are returned to the MSA client as SOAP Faults.

· Functional Errors IE906, IE917

X.IV.2.2.1 System Exceptions

A MSA invoking a web service operation should only do so in the context of an exception handling mechanism. In response to a system exception, a possible strategy for the MSA would be to retry the request, for a finite number of times (to be defined by MSA). In addition, it may be possible for the MSA to be configured with a wait period value, so that the MSA will effectively wait a period before retrying the SOAP request. In the case where the unavailability of the web service is temporary, a subsequent invocation of the web service may be successful.

Should the web service still be unavailable after all retry attempts have failed, the MSA has no option but to log the System exception, alert the Local System Administrator and return.

X.IV.2.2.2 Service Exceptions

The figure below shows a possible strategy for a NDEA response to a Service exception being thrown by a Central Services web service:

[image: image181.emf]/ ServiceException «web service»

/ WebService

/ NDEA

1 : \try\

2 : \invokeSOAPOperation\

3 : [service specifc error found]

\throw ServiceException\

4 : \new\

SOAPFault

Figure 127: MSA Response to Service Exception.

As with the System exception, NDEA invoking a Central Services web service operation should only do so with a context of an exception handling mechanism. Should a service specific exception be found (for example, if parameter values are invalid or the Central Services Web Service being in an inconsistent state to process the SOAP request), the web service throws a service exception back to the MSA client.

For instance, the “UpdateSEED” web service defines an operation to disseminate the updates which throws a “UpdateRejectedException” if there is a semantic problem with any data passed as a parameter.

A set of SOAP faults codes can be defined in Central Services described as following:

VersionMismatch: The processing party found an invalid namespace for the SOAP Envelope element

MustUnderstand: An immediate child element of the SOAP Header element that was either not understood or not obeyed by the processing party contained a SOAP mustUnderstand attribute with a value of "1"

Client: The Client class of errors indicate that the message was incorrectly formed or did not contain the appropriate information in order to succeed. For example, the message could lack the proper authentication or payment information. It is generally an indication that the message should not be resent without change.

Server: The Server class of errors indicate that the message could not be processed for reasons not directly attributable to the contents of the message itself but rather to the processing of the message. For example, processing could include communicating with an upstream processor, which didn't respond. The message may succeed at a later point in time.

X.IV.2.2.3 Functional Errors

Messages for error reporting are IE906 and IE917. The IE917 is used for reporting XML formatting errors, while Functional IE906 is used for reporting functional errors (e.g. violation of Information Exchange building rules). Note that the error reporting messages will be applicable to all scenarios of Common Domain Central Services

Sub-Section X.V Web Service Transactions

Every invocation of a web service operation initiates an implicit transaction. For the MSA client, this has several implications, which can be summarised as follows:

· If the invocation is successful i.e. no SOAP Fault or an IE906/IE917 is returned to the MSA, the transaction has been committed;

· For the web services, which perform update operations on entities (i.e. MaintainSEED, UpdateAvailabilty), if the operation succeeds then all the actions specified in the SOAP request have succeeded.

· If a web service throws an exception to the MSA in the form of a SOAP Fault or IE906/IE917, then the transaction has been rolled back;

· For the web service, if the operation fails then all the actions specified in the SOAP request have failed.

X.V.1 Asynchronous Web Services

Asynchronous web services have additional transactional behaviour, depending on the phase of the conversation lifetime:

· In the start phase of a conversation, if an exception is thrown then the conversation is never started, so that the MSA must try to start a new conversation as described in the discussion of the Conversation Lifetime above;

· If an exception is thrown during the “continue” or “finish” phases of a conversation, the conversational state is not updated. That is, the conversation remains at the previous state and the MSA should retry the operation that failed. By implication, if the exception is thrown during the “finish” phase of the conversation, the conversation is not terminated.

Sub-Section X.VI Web Service Security

Central Services web services may be secured on two levels: transport and message:

· Transport level security concerns authentication and authorisation of HTTP transport between the MSA and web services;

· An optional additional level of security concerns securing the actual content of the SOAP message exchanged. A specific OASIS specification called “WS-Security” addresses such message-level security.

X.VI.1 HTTP Transport Security

The standard way of securing HTTP transport is the use of the Secure Socket Layer (SSL). SSL can be either one-way or two-way:

· In one-way SSL, the identity of the server is confirmed through the presentation of a certificate to the client and communication between client and server is encrypted;

· In two-way SSL, both the client and server are required to present a certificate during an exchange that precedes the establishment of a secure SSL connection.

Transport-level security in Central Services is achieved through the use of “one-way SSL with form and basic Authentication”. The reasons for this choice are that one-way SSL is sufficient to ensure the integrity of the communication between client and server through encryption of the data and that two-ways SSL is more complex and requires the MSA to programmatically send a digital certificate to the server.

In order to achieve authentication of the central MSA to the Central Services web service, it is necessary to supplement one-way SSL with either form-based or basic authentication.

Central Services web services will support both:

· Form-based authentication for interactions through the CCN Network. This function is implemented by CCN;

· Basic authentication is used for access from the Commission intranet.

X.VI.1.1 CCN Authentication and Authorisation

Both user and application authentication will be needed for replacing the CCN Ticket Login Mechanism with the CCN Lightweight Session Cookie mentioned in “CCN Intranet Services - Programmer’s Guide” [R10]. The user authentication will be needed for the MSA user which supplies the Session ID to Central Services Application and the Application authentication for the relevant Server (CSRD) to get the profiles associated with the user.
Sub-Section X.VII CCN user HTTP authentication

The authentication mechanism is activated each time access is requested to a web page defined as “protected access” in CCN. It is typically used when using a HTML browser.
	
	Site A
	
	Site B

	
	
	Gateway A
	
	Gateway B
	

	Components
	[image: image182.wmf]Client A

	[image: image183.wmf]CCN Proxy A

(

Apache

)

	
	[image: image184.wmf]CCN Backbone

	
	[image: image185.wmf]CCN Proxy B

(

Apache

)

	[image: image186.wmf]Application Server B

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	LC1. HTTP Request

Get /WebPage.html
	
	
	
	
	
	
	
	
	
	
	
	
	

	LC2. HTTP Response

302 (moved)

Location: /ccnTicketLogin
	
	
	
	
	
	
	
	
	
	
	
	
	

	LC3. HTTP Request

Post /ccnTicketLogin
	
	
	
	
	
	
	
	
	
	
	
	
	

	LC4. HTTP Response

200 OK, set cookie

Refresh: /WebPage.html
	
	[image: image187.wmf]O

[image: image188.wmf]T

	
	
	
	
	
	
	
	
	
	
	

	C1. HTTP Request

Get /WebPage.html
	
	
	 [image: image189.wmf]O

[image: image190.wmf]T

	
	
	
	
	
	
	
	
	
	

	C2. HTTP Request

Get /WebPage.html
	
	
	
	
	
	
	[image: image191.wmf]O

[image: image192.wmf]T

	
	
	
	
	
	

	C3. HTTP Request

Get /WebPage.html
	
	
	
	
	
	
	
	
	
	
	
	[image: image193.wmf]O

[image: image194.wmf]T

	

Figure 128: Http flow (user part)

LC1. The client browser sends a ‘HTTP get request’ for the page ‘/WebPage.html’

LC2. Because the URL is not registered as being freely accessed (in the Gateway directory) and there is no CCN cookie attached to the flow, the Apache server returns a 302 (moved), and the location of the ccnTicketLogin is given back to the browser

[image: image195.png]GCNFTC Secure Proxy - Mozilla Firefox.
Ele Edt View Go Bookmarks Toos Help

€ D O O O D

(| Customize Links | | Free Hotmail | | Windows Merkstplace | | Windows Media | | Windows

Ticket Login

Taxation and Customs Union CCN/TC Secure Proxy

Welcome to the CCN Intranet

Access to this area is restricted.

Please enter your login and password to anthenticate.

Login: MYCLENT

Password:

You must set your browser to accept cookies in order for login to succeed.

You will be asked to log in again after some period of time has clapsed.

conteccpt cente. cencsiint 8443 (5

Figure 129: CCN Intranet user login screen

LC3. The client browser sends a ‘HTTP post for /ccnTicketLogin’ (Ticket handler) with the user and the password.

LC4. If the user is known in CCN and its password is correct, cookies will be built and attached to the flow.

C1. The client refreshes his ‘request to get /WebPage.html’. Two cookies are attached to the communication. The grey one is the old cookie (O), the green one (T) is the ccnSession lightweight ticket cookie. This cookie only contains a session ID (see §8.2). Relevant information about the user is stored on the gateway.

This session is verified by the ticket-handler. Based on user information linked to the session ID, access is granted or refused to the requested URL.

C2. Since the ‘CCN Proxy A’ is not the ‘request destination gateway’, the request is sent to the Proxy B (destination).

C3. The cookies are verified by the ticket-handler (MD5 key) (please refer to CCN Intranet Services - Programmer’s Guide [R10]). The ccnSession cookie is checked. And the request is sent to the destination (Application server).

Section XI Application authentication intranet services

This section describes the services which provide HTTP interfaces to the web applications in order to login (ccnServerLogin) into CCN and logout (ccnServerLogout) from CCN.

Sub-Section XI.I ccnServerLogin service

The table below describes the syntax of this service:
	This service provides a HTTP interface to allow a web-application to authenticate into CCN.

	Request

The request consists sending a POST of the following url:

https://[Gateway].[site].ccncsi.int:8443/ccnServerLogin

	Input
	· User

	
	· Password

	Response

The response consists in a XML buffer embedding the following information:

	Output
	· TICKET_RESPONSE

	Cookies set in response

	· ccnSession
· Ticket (obsolete but still created)

Table 43: ccnServerLogin syntax and description
XI.I.1 DTD of the response

<?xml version='1.0'?>

<!DOCTYPE TICKET_RESPONSE [

 <!ELEMENT TICKET_RESPONSE (#PCDATA)>

 <!ELEMENT TICKET_RESPONSE (ERROR?)>

 <!ATTLIST TICKET_RESPONSE name (TICKET_RESP) #REQUIRED

 returncode (SUCCESS|FAILURE) #REQUIRED

 ccnSessionId CDATA #IMPLIED >

 <!ELEMENT ERROR (#PCDATA)>

 <!ATTLIST ERROR description CDATA #REQUIRED >

]>

Table 44: ccnServerLogin response’s DTD
XI.I.2 Example of request

POST https://ccntcccp1.ccntc.ccncsi.int:8443/ccnServerLogin

Query data:

user=TESTUSR&password=testPassword

Table 45: ccnServerLogin request example
XI.I.3 Example of successful response

HTTP/1.1 200 OK

Set-Cookie: Ticket = ip&209.28.97.202&time&1123576862&user&TESTUSR&profiles&ADM2G-ADM2G-PRF.ADM2G WEBMON-PRF.VIES&site&CCN.TC&hash&85097673fbbacdc571e6c4021afc8317&expires&480; path=/; domain=.ccncsi.int

Set-Cookie: ccnSession = id&c36cbe6fa14e0a08e8e06683f157fd6e; path=/; domain=.ccncsi.int

<?xml version='1.0'?><TICKET_RESPONSE name="TICKET_RESP" return_code="SUCCESS" ccnSessionId="c36cbe6fa14e0a08e8e06683f157fd6e"/>

Table 46: ccnServerLogin success response example
XI.I.4 Example of unsuccessful response

HTTP/1.1 200 OK

<?xml version='1.0'?><TICKET_RESPONSE name="ERROR" return_code="FAILURE"><ERROR description="ERROR: The user CCNADM-USRxxx cannot be authenticated, error in srm_get_ext_sec_attributes"/></TICKET_RESPONSE>

Table 47: ccnServerLogin error response example
Sub-Section XI.II ccnServerLogout service

	This service provides a HTTP interface to allow a web-application to logout from CCN.

	Request

The request consists in calling a GET of the following url:

https://[Gateway].[site].ccncsi.int:8443/ccnServerLogout

	Cookie needed in request

	· ccnSession (this cookie is the set in the ccnServerLogin)

	Response

The response consists in a XML buffer embedding the following information:

	Output
	· TICKET_RESPONSE

Table 48: ccnServerLogout syntax and description
XI.II.1 DTD of the response

<?xml version='1.0'?>

<!DOCTYPE TICKET_RESPONSE [

 <!ELEMENT TICKET_RESPONSE (#PCDATA)>

 <!ELEMENT TICKET_RESPONSE (ERROR?)>

 <!ATTLIST TICKET_RESPONSE name (TICKET_RESP) #REQUIRED

 returncode (SUCCESS|FAILURE) #REQUIRED

 ccnSessionId CDATA #IMPLIED >

 <!ELEMENT ERROR (#PCDATA)>

 <!ATTLIST ERROR description CDATA #REQUIRED >

]>

Table 49: ccnServerLogout response’s DTD
XI.II.2 Example of request

GET https://ccntcccp1.ccntc.ccncsi.int:8443/ccnServerLogout

Cookie Data:

Ticket = ip&209.28.97.202&time&1123576862&user&TESTUSR&profiles&ADM2G-ADM2G-PRF.ADM2G WEBMON-PRF.VIES&site&CCN.TC&hash&85097673fbbacdc571e6c4021afc8317&expires&480; path=/; domain=.ccncsi.int; ccnSession = id&c36cbe6fa14e0a08e8e06683f157fd6e

Table 50: ccnServerLogout request example
XI.II.3 Example of successful response

HTTP/1.1 200 OK

<?xml version='1.0'?><TICKET_RESPONSE name="TICKET_RESP" return_code="SUCCESS"/>

Table 51: ccnServerLogout success response example
XI.II.4 Example of unsuccessful response

HTTP/1.1 200 OK

<?xml version='1.0'?><TICKET_RESPONSE name="ERROR" return_code="FAILURE"><ERROR description="ERROR: The information about session c36cbe6fa14e0a08e8e06683f1zzzzzz cannot be retrieved"/></TICKET_RESPONSE>

Table 52: ccnServerLogout error response example
XI.II.5 WS-Security

WS-Security offers ‘message-level’ security, which supplements ‘transport level’ security by addressing its weaknesses:

· Transport level security is only ‘point-to-point’ - SSL only encrypts the connection between the MSA HTTP client and Central Services. If the HTTP request is proxied via an intermediary (for instance, via the ND and CD Apache Servers), the intermediary receives the SOAP message in clear text. In contrast, ‘message-level’ security offers ‘end-to-end’ security: WS-Security ensures the integrity of a SOAP message. That is, the SOAP message is not available in clear text to any intermediary, so it is not possible alter the message content;

· With Transport level security, if a HTTP request is proxied, the originator of the request (MSA) may no longer be known to the receiver (Central Service). In contrast, with message level security it is possible to authenticate the identity of the sender (MSA) through the use of XML Digital Signatures;

· SSL encrypts everything; where as, in message level security with XML Encryption it is possible to protect the confidentiality of a SOAP message by encrypting only those specific parts of SOAP message that contain confidential information.

Central Services supports the OASIS WS-Security standard. WS-Security is defined in the OASIS standard specification.

The SOAP extensions take the form of a security element which has the following structure:

[image: image196.jpg]| [Eetetes

Gy other

This clement defins he
wiseiSacuty SOAP haader
lament per Secion 4.

any’ s 0 alow
arenshity and dffren
P of sty dovs.

|
|
‘ The e
|

Figure 130: WSSE Security Structure

In an instance of a SOAP request, the <wsse:Security> element is embedded in the Header element of the SOAP Envelope in both SOAP requests and responses:

	<SOAP-ENV:Header>

<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext"

SOAP-ENV:mustUnderstand="1">

…

</wsse:Security>

</SOAP-ENV:Header>

As shown in the previous figure, the <wsse:Security> element is extensible and can contain different kinds of security data. That is, the <wsse:Security> element may contain a <wsse:UsernameToken> or <wsse:BinarySecurityToken>. In addition, it may contain a <dsig:Signature> digital signature element. Finally, it may contain a <xenc:EncryptionKey> element to describe a key used to encrypt the content of a SOAP message. The diagram below shows the actual structure of a <wsse:Security> element in an instance of a SOAP request or response:

[image: image197.emf]�

wsse:Security

�

xenc:EncryptedKey

�

dsig:Signature

�

wsse:UsernameToken

�

wsse:BinarySecurityToken

�

- _xenc:EncryptedKey

�

1

�

- _wsse:BinarySecurityToken

�

1

�

- _dsig:Signature

�

1

�

- _wsse:UsernameToken

�

1

Figure 131: SOAP Request/Response Elements Contained by the WSSE Security Structure

In addition to the <wsse:Security> element contained in the SOAP Envelope header, if encryption is to be used to ensure message confidentiality, the Body of the SOAP Envelope may contain encrypted XML data according to an encryption scheme defined within the <wsse:Security> element.

For example:

	<SOAP-ENV:Body Id="Id-M3yXsNQfLaNYOOSpoofvlmZg">

<xenc:EncryptedData

xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

Id="Id-VDFRJSxZTq4eE5zWJ5n/N+Ex"

Type="http://www.w3.org/2001/04/xmlenc#Element">

…

</xenc:EncryptedData>

</SOAP-ENV:Body>

Currently 2 fields named X509Certificate and SignatureValue in the Format:Based64 Binary will be included in every message in order to ensure WS-security applicability.

However, the OASIS standard documentation should remain the definitive source of information on WS-Security.
Annex A Core Business - Functional Stage (FS) 0

This Annex contains a detailed specification of the message exchange protocols to be foreseen for the EMCS Core Business area in FS0, which covers only the destination side of Section III.

It shall be noted that a border has been added in the following Time Sequence Diagrams to indicate the applicable functionality for FS0. The MS destination application shall be able to send/receive messages to/from the MSA dispatch application as these are defined in the following scenarios. The actors at dispatch (Consignor & MSA dispatch application) have been added only for readability purpose. In FS0, the MSA has to implement only the functionality at Destination, as this is defined in the scope, in order for the MSA to be able to play the role of MSA destination application according to the following scenarios.

Please note that in the following diagrams, two types of operations have been used indicating two different types of validations that should be performed by the MSA destination application on a received message when this is draft and when it is duly valid (after the successful validation of the draft). In the first case, when a draft is sent by the Consignee, the MSA destination application uses the operation “Validate Msg Structure ()” to check the validity of the message against the corresponding XSD of DDNEA (this includes the structure validation as well as the validation of technical codelists) and the operation “Validate Msg Content ()” to check the business validity of the draft (against rules, conditions, business codelists, etc.). In the case where a message is received as a result of a successful validation of the draft from the sender MSA application, the recipient MSA application shall check only the message structure using the “Validate Msg Structure ()” operation. The exceptional cases are described in chapter A.2 indicating message exchanges when at least one of the aforementioned validations is not completed successfully.

Finally, it shall be noted that the following scenarios include functionality (timers, etc.), which according to the SD [A2] is optional in case the MSAs decide to implement it based on the national needs. Moreover, the scenarios below consider that the Consignee is PRO, which implies the availability of an Electronic Data Interchange (EDI) interface between the MSA destination application and the Consignee. In the case where it is ORO, the communication between the MSA destination and the Consignee is performed by any non-electronic means (no message exchange).

A.1 Central Circuit Scenarios

A.1.1 Basic Scenario

This scenario describes the message exchange protocol when one of the following cases exists:

· both Consignor and Consignee are warehouse keepers;

· the Consignor is a warehouse keeper and the Consignee is a registered Consignee;

· the Consignor is a warehouse keeper and the Consignee is a temporary registered Consignee.

Finally, the following assumptions have been made:

· the validation of Report of Receipt pass successfully at MSA of destination;

· the Consignee has not sent any alert or rejection for consignment after the reception of the e-AAD and before the submission of Report of Receipt.

A.1.1.1 Reception and processing of e-AAD (UC2.01)
The scenario starts when the MSA of destination application receives a duly valid e-AAD (IE801: C_AAD_VAL) from a MSA dispatch application. The MSA of destination application validates successfully the structure of the received message, stores the e-AAD information and also sets the state of the e-AAD at MSA of Destination to “Accepted”. Finally, the MSA destination application forwards the e-AAD (IE801: C_AAD_VAL) to its Consignee.

A.1.1.2 Submission of Report of Receipt (UC2.06)
After the arrival of consignment, the Consignee acknowledges the receipt of goods by submitting the draft Report of Receipt (RoR) (IE818: C_DEL_DAT) to the MSA destination application for formal validation. This RoR will indicate the acceptance of delivery (with or without shortages) or the refusal of delivery.

A.1.1.2.1 Delivery Accepted

If the validation process of draft RoR completes successfully and the delivery is accepted, the MSA destination application changes the state of the e-AAD at MSA of Destination to “Delivered” and forwards the validated Report of Receipt (IE818: C_DEL_DAT) to the MSA dispatch application. Finally, the MSA destination application sends back the validated RoR to the Consignee as a confirmation.

[image: image198.wmf] : Consignor

 : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee

 : Consignee

1: Send Msg (IE815: N_AAD_SUB)

5: Send Msg (IE801: C_AAD_VAL)

14: Send Msg (IE818: C_DEL_DAT (Acceptance))

4: Send Msg (IE801: C_AAD_VAL)

11: Send Msg (IE818: C_DEL_DAT (Acceptance))

7: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE818: C_DEL_DAT (Acceptance))

8: Send Msg (IE818: C_DEL_DAT (Acceptance))

2: Validate Msg Structure ()

3: Validate Msg Content ()

6: Validate Msg Structure ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

13: Validate Msg Structure ()

Functional Stage 0

Figure 132: TSD - Reception of e-AAD of which delivery is “Accepted” (with or without shortages) (FS0)

[image: image199.wmf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure ()

3: Validate Msg Content ()

13: Validate Msg Structure ()

6: Validate Msg Structure ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

Functional Stage 0

1: Send Msg (IE815: N_AAD_SUB)

5: Send Msg (IE801: C_AAD_VAL)

14: Send Msg (IE818: C_DEL_DAT (Acceptance))

4: Send Msg (IE801: C_AAD_VAL)

11: Send Msg (IE818: C_DEL_DAT (Acceptance))

7: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE818: C_DEL_DAT (Acceptance))

8: Send Msg (IE818: C_DEL_DAT (Acceptance))

Figure 133: CLD - Reception of e-AAD of which delivery is “Accepted” (with or without shortages) (FS0)

A.1.1.2.2 Delivery Refused

If the validation process of draft RoR completes successfully containing the refusal of delivery, then, the MSA destination application changes the state of the concerned e-AAD to “Refused” and disseminates the delivery notification message (IE818: C_DEL_DAT) to the Consignee as a confirmation and to the MSA dispatch application.

[image: image200.wmf] : Consignor

 : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee

 : Consignee

1: Send Msg (IE815: N_AAD_SUB)

5: Send Msg (IE801: C_AAD_VAL)

14: Send Msg (IE818: C_DEL_DAT (Refusal))

4: Send Msg (IE801: C_AAD_VAL)

11: Send Msg (IE818: C_DEL_DAT (Refusal))

7: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE818: C_DEL_DAT (Refusal))

8: Send Msg (IE818: C_DEL_DAT (Refusal))

2: Validate Msg Structure ()

3: Validate Msg Content ()

6: Validate Msg Structure ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

13: Validate Msg Structure ()

Functional Stage 0

Figure 134: TSD - Reception of e-AAD of which delivery is “Refused” (FS0)

[image: image201.wmf] : Consignor

 : System: MSA dispatch

application

 : System: MSA destination

application

 : Consignee

2: Validate Msg Structure ()

3: Validate Msg Content ()

13: Validate Msg Structure ()

6: Validate Msg Structure ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

Functional Stage 0

1: Send Msg (IE815: N_AAD_SUB)

5: Send Msg (IE801: C_AAD_VAL)

14: Send Msg (IE818: C_DEL_DAT (Refusal))

4: Send Msg (IE801: C_AAD_VAL)

11: Send Msg (IE818: C_DEL_DAT (Refusal))

7: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE818: C_DEL_DAT (Refusal))

8: Send Msg (IE818: C_DEL_DAT (Refusal))

Figure 135: CLD - Reception of e-AAD of which delivery is “Refused” (FS0)

A.1.1.2.3 Delivery Partially Refused

If the validation process of draft RoR completes successfully containing the partial refusal of delivery, then, the MSA destination application changes the state of the concerned e-AAD to “Partially Refused” and disseminates the delivery notification message (IE818: C_DEL_DAT) to the Consignee as a confirmation and to the MSA dispatch application.

[image: image202.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

Functional Stage 0

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

5: Send Msg(IE801: C_AAD_VAL)

4: Send Msg(IE801: C_AAD_VAL)

13: Validate Msg Structure()

14: Send Msg(IE818: C_DEL_DAT [Partial Refusal])

6: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL)

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE818: C_DEL_DAT [Partial Refusal])

12: Send Msg(IE818: C_DEL_DAT [Partial Refusal])

8: Send Msg(IE818: C_DEL_DAT [Partial Refusal])

Figure 136: TSD - Reception of e-AAD of which delivery is “Partially Refused” (FS0)

[image: image203.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801: C_AAD_VAL)

5: Send Msg(IE801: C_AAD_VAL)

6: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE818: C_DEL_DAT [Partial Refusal])

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE818: C_DEL_DAT [Partial Refusal])

12: Send Msg(IE818: C_DEL_DAT [Partial Refusal])

13: Validate Msg Structure()

14: Send Msg(IE818: C_DEL_DAT [Partial Refusal])

FUNCTIONAL STAGE 0

Figure 137: CLD - Reception of e-AAD of which delivery is “Partially Refused” (FS0)
A.1.2 Valid Business Scenarios before the submission of Report of Receipt

The following scenarios are valid after the submission of e-AAD and before the reception of Report of Receipt (IE818: C_DEL_DAT)

A.1.2.1 Reception and processing of update message (UC2.05)

This scenario describes the case where the MSA destination application receives an update message for a specific e-AAD. The assumption is that the MSA dispatch application has checked all the conditions, which must be satisfied for the change of destination. The Consignor is able to change the MS of destination, or the Consignee (and not the MS of destination), or only the Place of Delivery before the reception of the RoR. All the possible cases of change of destination are described below.

A.1.2.1.1 Change of MS of Destination

A prerequisite for this scenario is the existence of an e-AAD at destination, which has been registered according to procedure in Chapter A.1.1.1 and it is found in the “Accepted” state. In this case, the Consignor has decided to change the MS of destination.

Assuming that the goods have been dispatched, the MSA destination application receives an update for a specific e-AAD (IE813: C_UPD_DAT) from the MSA dispatch application. Then, the former MSA destination application validates the structure of the received message. Assuming that the message structure validation passes successfully, the former MSA destination application sends a notification message (IE803: C_AAD_NOT) to the former Consignee. Finally, the former MSA destination application sets the state of the e-AAD at the former MS of destination to “Diverted”.

At the other side, the new MSA destination application receives and validates the e-AAD (IE801: C_AAD_VAL). Assuming that the validation passes successfully, the new MSA destination application sends the e-AAD (IE801: C_AAD_VAL) to the new Consignee to inform him that he is the new Consignee of the movement. Moreover, the new MSA destination application sets the state of the movement to “Accepted”.
The Consignor may repeat this change of MS of Destination satisfying the aforementioned preconditions until the reception of RoR from the new Consignee. Hence, the new MSA destination application on the aforementioned scenario may become former if it will receive an update signalling the change of MS destination. Finally, the procedure of RoR registration is described in Chapter A.1.1.2.

[image: image204.wmf] : Consignor

 : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee

 : Consignee

NEW : System: MSA destination

application

NEW : System: MSA destination

application

NEW : Consignee

NEW : Consignee

1: Send Msg (IE815: N_AAD_SUB)

8: Send Msg (IE813: C_UPD_DAT)

5: Send Msg (IE801: C_AAD_VAL)

13: Send Msg (IE813: C_UPD_DAT)

24: Send Msg (IE818:C_DEL_DAT)

4: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE813: C_UPD_DAT)

7: Send Msg (IE801: C_AAD_VAL)

15: Send Msg (IE803: C_AAD_NOT)

11: Send Msg (IE801: C_AAD_VAL)

21: Send Msg (IE818:C_DEL_DAT)

17: Send Msg (IE801: C_AAD_VAL)

22: Send Msg (IE818:C_DEL_DAT)

18: Send Msg (IE818:C_DEL_DAT)

2: Validate Msg Structure ()

3: Validate Msg Content ()

6: Validate Msg Structure ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

14: Validate Msg Structure ()

16: Validate Msg Structure ()

19: Validate Msg Structure ()

20: Validate Msg Content ()

23: Validate Msg Structure ()

Functional Stage 0

Figure 138: TSD - Change of MS of Destination following the reception of a valid e-AAD (FS0)

[image: image205.wmf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

NEW : System: MSA destination application

NEW : Consignee

2: Validate Msg Structure ()

3: Validate Msg Content ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

23: Validate Msg Structure ()

6: Validate Msg Structure ()

14: Validate Msg Structure ()

16: Validate Msg Structure ()

19: Validate Msg Structure ()

20: Validate Msg Content ()

Functional Stage 0

1: Send Msg (IE815: N_AAD_SUB)

8: Send Msg (IE813: C_UPD_DAT)

5: Send Msg (IE801: C_AAD_VAL)

13: Send Msg (IE813: C_UPD_DAT)

24: Send Msg (IE818:C_DEL_DAT)

4: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE813: C_UPD_DAT)

11: Send Msg (IE801: C_AAD_VAL)

21: Send Msg (IE818:C_DEL_DAT)

7: Send Msg (IE801: C_AAD_VAL)

15: Send Msg (IE803: C_AAD_NOT)

17: Send Msg (IE801: C_AAD_VAL)

22: Send Msg (IE818:C_DEL_DAT)

18: Send Msg (IE818:C_DEL_DAT)

Figure 139: CLD - Change of MS of Destination following the reception of a valid e-AAD (FS0)
A.1.2.1.2 Change of Consignee (not the MS of Destination)

A prerequisite for this scenario is the existence of an e-AAD at destination, which has been registered according to the procedure in Chapter A.1.1.1 and it is found in the “Accepted” state. In this case, the Consignor has decided to change only the Consignee but not the MS of destination.

The scenario starts when the e-AAD (IE801: C_AAD_VAL) is received from the MSA dispatch application. This message signals the change of Consignee after Consignor’s decision. In this case, the MSA destination application checks and confirms that the ARC corresponds to a movement in the “Accepted” state. In addition, the MSA destination application checks whether the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) has already been received. Assuming that the message structure validation passes successfully and that the e-AAD (IE801: C_AAD_VAL) is unique (it contains a unique “(HEADER) E-AAD.Sequence Number”), the MSA destination application accepts and processes the message. The state of the e-AAD at the unchanged MSA of Destination is retained to “Accepted”.

Finally, the MSA destination application sends:

· A notification message (IE803: C_AAD_NOT) to the former Consignee to inform him that the consignment has changed destination;

· The e-AAD (IE801: C_AAD_VAL) to the new Consignee to notify him that he is the new Consignee of the consignment.

The Consignor may repeat this change of Consignee satisfying the aforementioned preconditions until the reception of RoR from the new Consignee. Hence, the new Consignee on the aforementioned scenario may become former if the MSA destination application will receive an update signaling again the change of Consignee. Finally, the procedure of RoR registration has been described in Chapter A.1.1.2.

[image: image206.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

NEW : Consignee NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

18: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

19: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

7: Send Msg(IE801: C_AAD_VAL)

21: Send Msg(IE803: C_AAD_NOT)

12: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

8: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

22: Send Msg(IE801: C_AAD_VAL)

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

20: Validate Msg Structure()

Functional Stage 0

New Consignee and new Place

of Delivery and updated

quantity (in case of partial

refusal)

Figure 140: TSD - Change of Consignee following the reception of a valid e-AAD (FS0)

[image: image207.emf] : Consignor

 : System: MSA dispatch application : System: MSA destination application

 : Consignee

NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

2: Validate Msg Structure()

3: Validate Msg Content()

4: Send Msg(IE801: C_AAD_VAL)

5: Send Msg(IE801: C_AAD_VAL)

6: Validate Msg Structure()

7: Send Msg(IE801: C_AAD_VAL)

8: Send Msg(IE813: C_UPD_DAT)

9: Validate Msg Structure()

10: Validate Msg Content()

11: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE813: C_UPD_DAT)

13: Validate Msg Structure()

14: Send Msg(IE803: C_AAD_NOT)

15: Send Msg(IE801: C_AAD_VAL)

16: Send Msg(IE818: C_DEL_DAT)

17: Validate Msg Structure()

18: Validate Msg Content()

19: Send Msg(IE818: C_DEL_DAT)

20: Send Msg(IE818: C_DEL_DAT)

21: Validate Msg Structure()

22: Send Msg(IE818: C_DEL_DAT)

Figure 141: CLD - Change of Consignee following the reception of a valid e-AAD (FS0)

In the case that the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) with the same content has already been received, the MSA destination application ignores the duplicate instance.

In the exceptional case that the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) but with different content has already been received, the MSA destination application rejects the message via an IE906 reporting an out-of-sequence violation (Chapter III.I.2.1 Exception Handling in Common Domain).
A.1.2.1.3 Change of Place of Delivery

This particular sub-case of A.1.2.1 describes the message exchange protocol when the Consignor decides to change the Place of Delivery for a valid e-AAD before the reception of the RoR. Hence, there is the precondition that an e-AAD has been registered at destination according to the procedure of Chapter A.1.1.1 and it is found on the “Accepted” state (no RoR has been received from the Consignee).

Upon the reception of the update message (IE813: C_UPD_DAT), the MSA destination application validates successfully the structure of the message, retains the state of e-AAD to “Accepted” and forwards the update message (IE813: C_UPD_DAT) to the Consignee.

The Consignor may repeat this change of Place of Delivery satisfying the aforementioned preconditions until the reception of RoR from the new Consignee. It is assumed that the MSA destination application receives the RoR from the Consignee within the allocated time (before the expiration of TIM_AAD) containing either the acceptance or the refusal of delivery. The procedure of RoR for FS0 has been extensively described in Chapter A.1.2.

[image: image208.wmf] : Consignor

 : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee

 : Consignee

1: Send Msg (IE815: N_AAD_SUB)

8: Send Msg (IE813: C_UPD_DAT)

5: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE813: C_UPD_DAT)

21: Send Msg (IE818:C_DEL_DAT)

4: Send Msg (IE801: C_AAD_VAL)

11: Send Msg (IE813: C_UPD_DAT)

18: Send Msg (IE818:C_DEL_DAT)

7: Send Msg (IE801: C_AAD_VAL)

14: Send Msg (IE813: C_UPD_DAT)

19: Send Msg (IE818:C_DEL_DAT)

15: Send Msg (IE818:C_DEL_DAT)

2: Validate Msg Structure ()

3: Validate Msg Content ()

6: Validate Msg Structure ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

13: Validate Msg Structure ()

16: Validate Msg Structure ()

17: Validate Msg Content ()

20: Validate Msg Structure ()

Functional Stage 0

Figure 142: TSD - Change of Place of Delivery following the reception of a valid e-AAD (FS0)

[image: image209.wmf] : Consignor

 : System: MSA dispatch

application

 : System: MSA destination

application

 : Consignee

2: Validate Msg Structure ()

3: Validate Msg Content ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

20: Validate Msg Structure ()

6: Validate Msg Structure ()

13: Validate Msg Structure ()

16: Validate Msg Structure ()

17: Validate Msg Content ()

Functional Stage 0

1: Send Msg (IE815: N_AAD_SUB)

8: Send Msg (IE813: C_UPD_DAT)

5: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE813: C_UPD_DAT)

21: Send Msg (IE818:C_DEL_DAT)

4: Send Msg (IE801: C_AAD_VAL)

11: Send Msg (IE813: C_UPD_DAT)

18: Send Msg (IE818:C_DEL_DAT)

7: Send Msg (IE801: C_AAD_VAL)

14: Send Msg (IE813: C_UPD_DAT)

19: Send Msg (IE818:C_DEL_DAT)

15: Send Msg (IE818:C_DEL_DAT)

Figure 143: CLD - Change of Place of Delivery following the reception of a valid e-AAD (FS0)

A.1.2.2 Reception and processing of e-AAD cancellation (UC2.10)
The purpose of this scenario is to describe the communication protocol when the Consignor requests the cancellation of a recently submitted and validated e-AAD. Hence, as a precondition for this scenario is that a draft e-AAD has been previously submitted, as described in chapter A.1.1.1 and it is found on the “Accepted” state. Moreover, it is assumed that the cancellation is submitted before the dispatch of the consignment.

Upon the reception of a valid cancellation (IE810: C_CAN_DAT), the MSA destination application validates successfully the structure of the cancellation message, stores the cancellation information and changes the state of the e-AAD to “Cancelled”. Finally, the MSA destination application forwards the cancellation notification (IE810: C_CAN_DAT) to the Consignee.

The cancellation of an e-AAD is always a final operation and the movement state at the MSA destination application is updated from “Accepted” to “Cancelled”, which is a final state.

[image: image210.wmf] : Consignor

 : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee

 : Consignee

{Movement has not

been dispacthed}

1: Send Msg (IE815: N_AAD_SUB)

7: Send Msg (IE810: C_CAN_DAT)

5: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE810: C_CAN_DAT)

4: Send Msg (IE801: C_AAD_VAL)

11: Send Msg (IE810: C_CAN_DAT)

8: Send Msg (IE801: C_AAD_VAL)

14: Send Msg (IE810: C_CAN_DAT)

2: Validate Msg Structure ()

3: Validate Msg Content ()

6: Validate Msg Structure ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

13: Validate Msg Structure ()

Functional Stage 0

Figure 144: TSD - Reception and processing of e-AAD cancellation

[image: image211.wmf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure ()

3: Validate Msg Content ()

9: Validate Msg Structure ()

10: Validate Msg Content ()

6: Validate Msg Structure ()

13: Validate Msg Structure ()

Functional Stage 0

1: Send Msg (IE815: N_AAD_SUB)

7: Send Msg (IE810: C_CAN_DAT)

5: Send Msg (IE801: C_AAD_VAL)

12: Send Msg (IE810: C_CAN_DAT)

4: Send Msg (IE801: C_AAD_VAL)

11: Send Msg (IE810: C_CAN_DAT)

8: Send Msg (IE801: C_AAD_VAL)

14: Send Msg (IE810: C_CAN_DAT)

Figure 145: CLD - Reception and processing of e-AAD cancellation

A.1.3 Valid Business Scenarios after the reception of Report of Receipt (Refused Delivery)

After the refusal or partial refusal of delivery from the Consignee through the RoR (IE818: C_DEL_DAT), the Consignor shall perform Change of Destination.

A.1.3.1 Reception and processing of update message (UC2.05)

The following sub-scenarios describe cases where the MSA destination application receives an update message for a specific e-AAD indicating the Change of Destination due to consignment refusal or partial refusal. It is assumed that the MSA dispatch application has checked all the required conditions, which must be satisfied for a valid Change of Destination. The Consignor is able to change the MS of Destination, or the Consignee and the Place of Delivery (and not the MS of destination), or only the Place of Delivery. All the possible cases of change of destination are described below.

A.1.3.1.1 Change of MS of Destination

This scenario describes specifically the sequence of messages that are exchanged with the MSA destination application when the Consignor changes the MS of Destination in order to continue an e-AAD of which delivery is refused or partially refused from the Consignee.

Hence, a precondition for this scenario is that an update message (IE813: C_UPD_DAT) is received for an e-AAD, which is found in either the “Refused” state or in the “Partially Refused” state.

Upon the reception of the update message (IE813: C_UPD_DAT), the former MSA destination application validates the structure of the message. Assuming that the message structure validation passes successfully, the former MSA destination application sends a notification message (IE803: C_AAD_NOT) to the former Consignee to inform him that the whole consignment (in case of refusal) or the refused part of the consignment (in case of partial refusal) has changed destination. In case of refusal of delivery, the state of the e-AAD at the former MSA of Destination is updated from “Refused” to “Diverted”. In case of partial refusal of delivery, the state of the e-AAD at the former MSA of Destination is updated from “Partially Refused” to “Delivered”.

At the other side, the new MSA destination application receives and validates the e-AAD (IE801: C_AAD_VAL). Assuming that the validation passes successfully, the new MSA destination application sends the e-AAD (IE801: C_AAD_VAL) to the new Consignee to inform him that he is the new Consignee of the whole consignment (in case of refusal by the former Consignee) or of the refused part of the consignment (in case of partial refusal by the former Consignee). Moreover, the new MSA destination application sets the state of the movement to “Accepted”.
The exchange of messages is shown in figure below, starting from the processing of the received valid e-AAD until the change of MS of Destination after the refusal or partial refusal of the consignment.

[image: image212.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

NEW : System: MSA

destination application

NEW : System: MSA

destination application

NEW : Consignee NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

13: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

15: Send Msg(IE818: C_DEL_DAT

[Refusal or Partial Refusal])

21: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

19: Send Msg(IE813: C_UPD_DAT)

11: Send Msg(IE818: C_DEL_DAT

[Refusal or Partial Refusal])

7: Send Msg(IE801: C_AAD_VAL)

24: Send Msg(IE803: C_AAD_NOT)

12: Send Msg(IE818: C_DEL_DAT

[Refusal or Partial Refusal])

8: Send Msg(IE818: C_DEL_DAT

[Refusal or Partial Refusal])

18: Send Msg(IE801: C_AAD_VAL)

23: Send Msg(IE801: C_AAD_VAL)

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

14: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

22: Validate Msg Structure()

20: Validate Msg Structure()

Functional Stage 0

Figure 146: TSD - Processing of change of the MS of Destination for an e-AAD of which delivery has been “Refused” or “Partially Refused”

[image: image213.emf] : Consignor

 : System: MSA dispatch application : System: MSA destination application

 : Consignee

NEW : System: MSA destination application

NEW : Consignee

2: Validate Msg Structure()

3: Validate Msg Content() 6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

14: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

20: Validate Msg Structure()

22: Validate Msg Structure()

FUNCTIONAL STAGE 0

1: Send Msg(IE815: N_AAD_SUB)

13: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

15: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

21: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

19: Send Msg(IE813: C_UPD_DAT)

11: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

18: Send Msg(IE801: C_AAD_VAL)

7: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

24: Send Msg(IE803: C_AAD_NOT)

8: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

23: Send Msg(IE801: C_AAD_VAL)

Figure 147: CLD - Processing of change of the MS of Destination for an e-AAD of which delivery has been “Refused” or “Partially Refused”
A.1.3.1.2 Change only Consignee
After the refusal or partial refusal of the consignment (IE818: C_DEL_DAT), the Consignor is able to change only the Consignee and not the MS of Destination. This case is described in this section specifying the message exchange protocol for the MSA destination application.

The precondition of this scenario is that the e-AAD exists in the MSA destination application and it is found in the “Refused” state if the delivery is completely refused or in the “Partially Refused” state if the delivery is partially refused. The e-AAD has been created in the MSA destination application based on the scenario in Chapter A.1.1.1, while the consignment has been refused or partially refused by the Consignee as it was described in chapters A.1.1.2.2 and A.1.1.2.3, respectively.

Upon the reception of the e-AAD (IE801: C_AAD_VAL), the MSA destination application checks and confirms that the ARC corresponds to a movement in the “Refused” or “Partially Refused” state. Following, the MSA destination application validates the structure of the received e-AAD (IE801: C_AAD_VAL). In addition, the MSA destination application checks whether the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) has already been received. Assuming that the message structure validation passes successfully and that the e-AAD (IE801: C_AAD_VAL) is unique (it contains a unique “(HEADER) E-AAD.Sequence Number”), the MSA destination application accepts and processes the message. The state of the e-AAD at the unchanged MSA of Destination is updated from “Refused” or “Partially Refused” to “Accepted”.

Finally, the MSA destination application sends:

· A notification message (IE803: C_AAD_NOT) to the former Consignee to inform him that the whole consignment (in case of refusal) or the refused part of the consignment (in case of partial refusal) has changed destination;

· The e-AAD (IE801: C_AAD_VAL) to the new Consignee to inform him that he is the new Consignee of the whole consignment (in case of refusal by the former Consignee) or of the refused part of the consignment (in case of partial refusal by the former Consignee).

[image: image214.emf] : Consignor : Consignor

 : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

NEW : Consignee NEW : Consignee

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

18: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

19: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

7: Send Msg(IE801: C_AAD_VAL)

21: Send Msg(IE803: C_AAD_NOT)

12: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

8: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

22: Send Msg(IE801: C_AAD_VAL)

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

20: Validate Msg Structure()

Functional Stage 0

New Consignee and new Place

of Delivery and updated

quantity (in case of partial

refusal)

Figure 148: TSD - Processing of change of Consignee for an e-AAD of which delivery has been “Refused” or “Partially Refused”

[image: image215.emf] : Consignor

 : System: MSA dispatch application : System: MSA destination application

 : Consignee

NEW : Consignee

2: Validate Msg Structure()

3: Validate Msg Content() 6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content() 20: Validate Msg Structure()

Functional Stage 0

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

18: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

19: Send Msg(IE801: C_AAD_VAL)

11: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

7: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

21: Send Msg(IE803: C_AAD_NOT)

8: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

22: Send Msg(IE801: C_AAD_VAL)

Figure 149: CLD - Processing of change of Consignee for an e-AAD of which delivery has been “Refused” or “Partially Refused”

In the case that the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) with the same content has already been received, the MSA destination application ignores the duplicate instance.

In the exceptional case that the same e-AAD (IE801: C_AAD_VAL) instance (same ARC and same “(HEADER) E-AAD.Sequence Number”) but with different content has already been received, the MSA destination application rejects the message via an IE906 reporting an out-of-sequence violation (Chapter III.I.2.1 Exception Handling in Common Domain).
A.1.3.1.3 Change of Place of Delivery

Another option for the Consignor is to change the Place of Delivery for a “Refused” or “Partially Refused” movement. In this case the Consignor sends an update message (IE813: C_UPD_DAT). This scenario is focused on the destination side.

Upon the reception of the update message (IE813: C_UPD_DAT) from the MSA dispatch application, the MSA destination application validates successfully the received update and sets the state of e-AAD at the MS of destination to “Accepted”. Finally, the MSA dispatch application forwards the update message (IE813: C_UPD_DAT) to the Consignee.

The aforementioned message exchange is shown in the following diagrams:

[image: image216.emf] : Consignor : Consignor : System: MSA dispatch

application

 : System: MSA dispatch

application

 : System: MSA destination

application

 : System: MSA destination

application

 : Consignee : Consignee

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

19: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

18: Send Msg(IE813: C_UPD_DAT)

11: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

7: Send Msg(IE801: C_AAD_VAL)

21: Send Msg(IE813: C_UPD_DAT)

12: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

8: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

20: Validate Msg Structure()

Functional Stage 0

Figure 150: TSD - Processing of change of Place of Delivery for an e-AAD of which delivery has been “Refused” or “Partially Refused”

[image: image217.emf] : Consignor

 : System: MSA dispatch application

 : System: MSA destination application

 : Consignee

2: Validate Msg Structure()

3: Validate Msg Content()

6: Validate Msg Structure()

9: Validate Msg Structure()

10: Validate Msg Content()

13: Validate Msg Structure()

16: Validate Msg Structure()

17: Validate Msg Content()

20: Validate Msg Structure()

1: Send Msg(IE815: N_AAD_SUB)

15: Send Msg(IE813: C_UPD_DAT)

5: Send Msg(IE801: C_AAD_VAL)

14: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

19: Send Msg(IE813: C_UPD_DAT)

4: Send Msg(IE801: C_AAD_VAL)

18: Send Msg(IE813: C_UPD_DAT)

11: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

7: Send Msg(IE801: C_AAD_VAL)

12: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

21: Send Msg(IE813: C_UPD_DAT)

8: Send Msg(IE818: C_DEL_DAT [Refusal or Partial Refusal])

FUNCTIONAL STAGE 0

Figure 151: CLD - Processing of change of Place of Delivery for an e-AAD of which delivery has been “Refused” or “Partially Refused”

A.1.4 Other Valid Scenarios

A.1.4.1 Download of an e-AAD by a non-involved MSA (UC2.51)
The purpose of this scenario is to describe the case where a MSA Official wants to search for a movement by providing the ARC.

The Requesting MSA application builds and sends the query of the MSA Official to the MSA dispatch application (it is the MSA of which the Member State code appears in the third and fourth characters of the ARC) via the Status Request (IE904: C_STD_REQ) message, including the ARC, the status set to “None” and the last message received from the MSA of Dispatch set to “None”. Furthermore, the Requesting MSA application has to explicitly declare that it requests the full movement history by setting the “Message Type” field in the Status Request (IE904: C_STD_REQ) message to “2: Movement History Request”. If the “Message Type” field is not set to “2: Movement History Request”, then only the status of the movement will be returned back from the MSA of Dispatch.

The MSA dispatch application receives and validates successfully the Status Request (IE904: C_STD_REQ).

In the case that the e-AAD is found, the MSA dispatch application replies with a Status Response (IE905: C_STD_RSP) conveying the actual status of the movement (for example, “Accepted”) and the last message received from the MSA of Destination for the specific ARC. Following the submission of the IE905, the MSA dispatch application also submits to the requesting MSA the IE934: C_PAC_DAT message that includes all business messages comprising the movement history.

If no AAD is found, a Status Response (IE905: C_STD_RSP) with “Status = None” and last message set to “None” is sent back to the requesting MSA application. This means either that the ARC is invalid or that the commonly agreed time for consultation of movement data has passed, and therefore the e-AAD has been archived and is no more available on line. Subsequently, no other business messages re-submission follows.

Upon the reception of movement information (successful response) (IE934: C_PAC_DAT), the Requesting MSA application (Requestor) validates successfully the structure of the message and proceeds with the storage of information. Therefore, the e-AAD information is available for consultation from the MSA Official.

[image: image218.emf]Requesting : System: MSA

application

Requesting : System: MSA

application

 : System: MSA dispatch

application

 : System: MSA dispatch

application

1: Send Msg(IE904:C_STD_REQ [ARC=X && State=None && LastMsgRcv=None])

3: Send Msg(IE905:C_STD_RSP [[ARC=X && State=xxx && LastMsgRcv=IExxx])

2: Validate Msg Structure()

4: Validate Msg Structure()

5: Send Msg(IE934:C_PAC_DAT)

6: Validate Msg Structure()

FUNCTIONAL STAGE 0

Figure 152: TSD - e-AAD information downloaded successfully by a non-involved MSA

[image: image219.emf]Requesting : System: MSA application : System: MSA dispatch application

2: Validate Msg Structure()

4: Validate Msg Structure()

6: Validate Msg Structure()

FUNCTIONAL STAGE 0

1: Send Msg(IE904:C_STD_REQ [ARC=X && State=None &&

LastMsgRcv=None])

3: Send Msg(IE905:C_STD_RSP [[ARC=X && State=xxx &&

LastMsgRcv=IExxx])

5: Send Msg(IE934:C_PAC_DAT)

Figure 153: CLD - e-AAD information downloaded successfully by a non-involved MSA

[image: image220.emf]Requesting : System: MSA

application

Requesting : System: MSA

application

 : System: MSA dispatch

application

 : System: MSA dispatch

application

1: Send Msg(IE904:C_STD_REQ [ARC=X && State=None && LastMsgRcv=None)

3: Send Msg(IE905:C_STD_RSP [[ARC=X && State=None && LastMsgRcv=None)

2: Validate Msg Structure()

4: Validate Msg Structure()

Functional Stage 0

Figure 154: TSD - Download of an e-AAD by a non-involved MSA failed

[image: image221.emf]FUNCTIONAL STAGE 0

Requesting : System: MSA application : System: MSA dispatch application

2: Validate Msg Structure() 4: Validate Msg Structure()

1: Send Msg(IE904:C_STD_REQ [ARC=X && State=None

&& LastMsgRcv=None)

3: Send Msg(IE905:C_STD_RSP [[ARC=X &&

State=None && LastMsgRcv=None)

Figure 155: CLD - Download of an e-AAD by a non-involved MSA failed
A.1.4.2 General query to retrieve an e-AAD (UC2.52)
At any moment, the MSA Official may perform a query to find one or more movement(s) that match(es) the search criteria. The general query is very useful when the ARC of the movement is unknown to the MSA Official.

The query (IE701: C_REQ_SUB) is forwarded by the Requesting MSA application (Requestor) to the MSA application that has initiated the requested e-AAD (identified from the first two letters of ARC).

The initiator MSA application may respond either successfully by sending the query results (IE821: C_LST_VAL) or unsuccessfully by returning error message (IE702: C_REQ_REF).

Upon the reception of query results (IE821: C_LST_VAL), the Requesting MSA application (Requestor) validates the structure of the message successfully and provides them to the MSA Official for consultation.

In case an error message (IE702: C_REQ_REF) is sent by the MSA dispatch application as a response to the submitted request (IE701: C_REQ_SUB), the Requesting MSA application (Requestor) validates the structure of the error message successfully and makes available the query error to MSA Official.

[image: image222.wmf]National (Requestor) : System:

MSA application

National (Requestor) : System:

MSA application

Initiator : System: MSA

application

Initiator : System: MSA

application

1: IE701:C_REQ_SUB

3: IE821: C_LST_VAL

2: Validate Msg Structure ()

4: Validate Msg Structure ()

Functional Stage 0

Figure 156: TSD - Successful retrieval of e-AAD(s)

[image: image223.wmf]National (Requestor) : System: MSA

application

Initiator : System: MSA application

1: IE701:C_REQ_SUB

2: Validate Msg Structure ()

3: IE821: C_LST_VAL

4: Validate Msg Structure ()

Functional Stage 0

Figure 157: CLD - Successful retrieval of e-AAD(s)

[image: image224.emf]National (Requestor) : System:

MSA application

National (Requestor) : System:

MSA application

Initiator : System: MSA

application

Initiator : System: MSA

application

1: IE701:C_REQ_SUB

3: IE702: C_REQ_REF

2: Validate Msg Structure ()

4: Validate Msg Structure ()

Functional Stage 0

Figure 158: TSD - No movement found or limit exceeded

[image: image225.wmf]National (Requestor) : System: MSA

application

Initiator : System: MSA application

1: IE701:C_REQ_SUB

2: Validate Msg Structure ()

3: IE702: C_REQ_REF

4: Validate Msg Structure ()

Functional Stage 0

Figure 159: CLD - No movement found or limit exceeded

A.2 Exception Handling (EH)

All the aforementioned scenarios described the anticipated message exchange when the NDEA is in the FS0 and plays the role of Destination. The assumption for all these scenarios was that the interchanged messages are complied with the DDNEA structure. Moreover, it was assumed that the excise movement at Destination is found on an appropriate state. A movement is found on an appropriate state if the transition from the current state to another is valid after the reception of the message (event). The validity of the state transitions for the FS0 of Core Business is defined in the chapter A.3 of Annex A.

A.2.1 Exception Handling in External Domain

The recommended exception handling mechanism in the external domain for a NDEA in FS0 is described by the Destination specific scenarios in Chapter III.I.2.
A.2.2 Exception Handling in Common Domain

In FS0, the exceptional cases in Common Domain will be handled using the same mechanism as in the FS1 (Section III). A NDEA shall implement only the destination side functionality. Hence, the scenarios described in Chapter III.I.2.1 of Section III will also be valid for the FS0 and depending on the exceptional case (Rejection due to functional errors, Manual Status Request/Response, Manual Status Synchronisation Request, Automatic Status Synchronisation), the MSA destination application shall be able to behave according to this mechanism.

A.3 State-Transition Diagram for FS0

It has been clarified at the beginning that this section considers only the destination side. Therefore, this sub-section includes only the state-machine for the MSA of Destination when this has deployed the functionality of FS0.

[image: image226.emf]Accepted

Delivered

IE813:C_UPD_DAT(Place of Delivery changed before RoR) /

IE801:C_AAD_VAL(Consignee changed before RoR)

Refused

Cancelled

e-AAD Manually

Closed

Diverted

IE813: C_UPD_DAT(Place of Delivery changed)

IE905:C_STD_RSP(e-AAD

Manually Closed)

IE813:C_UPD_DAT(MS

of DES changed)

IE801:C_AAD_VAL(Consignee changed)

Partially

Refused

IE801:C_AAD_VAL(Consignee changed)

IE905:C_STD_RSP(e-AAD Manually Closed)

IE813: C_UPD_DAT(Change of MS of Destination)

IE801:C_AAD_VAL / IE801:C_AAD_VAL (MS of DES changed)

IE818:C_DEL_DAT(Acceptance)

IE818:C_DEL_DAT(Refusal)

IE810:C_CAN_DAT(only before dispatch)

IE905:C_STD_RSP(e-AAD

Manually Closed)

IE813:C_UPD_DAT(MS of DES changed)

IE818:C_DEL_DAT(Partial Refusal)

Figure 160: STD at MSA of Destination for FS0

A.4 Functional Timers

	TIM_EXP

	Started:
	UC-206-230 - Validate Report of Receipt at MSA of destination

If shortages have been declared in the Report of Receipt, then the TIM_EXP timer is initiated by the MSA destination application to expire at the limit date for explanations about shortages from Consignor.

	Stopped:
	“Stop” event can occur manually by the MSA since UC 2.13 - Post-Delivery Processing is not yet implemented.

Table 53: TIM_EXP functional timer in FS0
Appendices

Appendix A : Message Scope

Appendix B : Codelists

Appendix C : EMCS Correlation Table

Appendix D : Technical Message Structure

Appendix E : XML Mapping

Appendix F : Data Groups & Transaction Hierarchy

Appendix G : Data Items

Appendix H : Directory with XML Schemas (XSDs)

Appendix I : Directory with Web Service Interface Definitions (WSDLs)
Domains

National and External

character sets)

MSA 1

Common Domain

(data item conventions,

(data item conventions,

character sets)

Data item

conversion

Character set

conversion

Data item

conversion

Character set

conversion

MSA2

National and External

Domains

(data item conventions,

character sets)

Data item

conversion

Character set

conversion

MSA1

National and External

Domains

(data item conventions,

character sets)

� Hence, the ARC is the same as in the original e-AAD

� Hence, the ARC is the same as in the original e-AAD

� Hence, the ARC is the same as in the original e-AAD

� Any technical Status Request/Response messages will not be incorporated in the movement history except from the IE905 used for manually closure of a movement (see � REF _Ref216177893 \r \h ��III.I.2.1.5� � REF _Ref216177897 \h ��Manual Closing of the Movement�)

�This case is a rare scenario to take place in real life.

� This functional error shall not be used from the MSA destination application for the case where a draft Report of Receipt is submitted by the Consignee containing an ARC unknown to MSA of Destination. This case is handled using the IE904/IE905 mechanism.

� The event messages are those business messages that are received from a MSA application over the Common Domain and cause a state transition to the e-AAD.

� An interesting annotated version of the specification is available at http://www.xml.com/axml/testaxml.htm.

� NETA is a nationally developed application and it should not be confused with TA, which is a centrally developed application. TA is deployed only centrally and it cannot be deployed at the premises of MSAs.

� Please note that no queues are defined for MSAs for this function.

� Please note that no queues are defined for MSAs for this function.

� As Commission’s users will not access SEED through CCN, their profiles are not defined here.

